IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i12p1991-2003.html
   My bibliography  Save this article

Relative Robust Portfolio Optimization with benchmark regret

Author

Listed:
  • Gonçalo Simões
  • Mark McDonald
  • Stacy Williams
  • Daniel Fenn
  • Raphael Hauser

Abstract

We extend Relative Robust Portfolio Optimization models to allow portfolios to optimize their performance when considered relative to a set of benchmarks. We do this in a minimum volatility setting, where we model regret directly as the maximum difference between our volatility and that of a given benchmark. Portfolio managers are also given the option of computing regret as a proportion of the benchmark’s performance, which is more in line with market practice than other approaches suggested in the literature. Furthermore, we propose using regret as an extra constraint rather than as a brand new objective function, so practitioners can maintain their current framework. We also look into how such a triple optimization problem can be solved or at least approximated for a general class of objective functions and uncertainty and benchmark sets. Finally, we illustrate the benefits of this approach by examining its performance against other common methods in the literature in several equity markets.

Suggested Citation

  • Gonçalo Simões & Mark McDonald & Stacy Williams & Daniel Fenn & Raphael Hauser, 2018. "Relative Robust Portfolio Optimization with benchmark regret," Quantitative Finance, Taylor & Francis Journals, vol. 18(12), pages 1991-2003, December.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:12:p:1991-2003
    DOI: 10.1080/14697688.2018.1453940
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1453940
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1453940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    3. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    4. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    5. Zongrun Wang & Tangtang He & Xiaohang Ren & Luu Duc Toan Huynh, 2024. "Robust portfolio strategies based on reference points for personal experience and upward pacesetters," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 863-887, October.
    6. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    7. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:12:p:1991-2003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.