IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i2p183-194.html
   My bibliography  Save this article

On the numerical stability of simulation methods for SDEs under multiplicative noise in finance

Author

Listed:
  • Eckhard Platen
  • Lei Shi

Abstract

When simulating discrete-time approximations of solutions of stochastic differential equations (SDEs), in particular martingales, numerical stability is clearly more important than some higher order of convergence. Discrete-time approximations of solutions of SDEs with multiplicative noise, similar to the Black--Scholes model, are widely used in simulation in finance. The stability criterion presented in this paper is designed to handle both scenario simulation and Monte Carlo simulation, i.e. both strong and weak approximations. Methods are identified that have the potential to overcome some of the numerical instabilities experienced when using the explicit Euler scheme. This is of particular importance in finance, where martingale dynamics arise frequently and the diffusion coefficients are often multiplicative. Stability regions for a range of schemes are visualized and analysed to provide a methodology for a better understanding of the numerical stability issues that arise from time to time in practice. The result being that schemes that have implicitness in the approximations of both the drift and the diffusion terms exhibit the largest stability regions. Most importantly, it is shown that by refining the time step size one can leave a stability region and may face numerical instabilities, which is not what one is used to experiencing in deterministic numerical analysis.

Suggested Citation

  • Eckhard Platen & Lei Shi, 2013. "On the numerical stability of simulation methods for SDEs under multiplicative noise in finance," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 183-194, January.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:183-194
    DOI: 10.1080/14697688.2012.713981
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.713981
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.713981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tocino, A. & Zeghdane, R. & Senosiaín, M.J., 2021. "On the MS-stability of predictor–corrector schemes for stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 289-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:2:p:183-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.