IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Choosing the optimal annuitization time post-retirement

Listed author(s):
  • Russell Gerrard
  • Bjarne Højgaard
  • Elena Vigna
Registered author(s):

    In the context of decision making for retirees of a defined contribution pension scheme in the de-cumulation phase, we formulate and solve a problem of finding the optimal time of annuitization for a retiree having the possibility of choosing her own investment and consumption strategy. We formulate the problem as a combined stochastic control and optimal stopping problem. As criterion for the optimization we select a loss function that penalizes both the deviance of the running consumption rate from a desired consumption rate and the deviance of the final wealth at the time of annuitization from a desired target. We find closed-form solutions for the problem and show the existence of three possible types of solutions depending on the free parameters of the problem. In numerical applications we find the optimal wealth that triggers annuitization, compare it with the desired target and investigate its dependence on both parameters of the financial market and parameters linked to the risk attitude of the retiree. Simulations of the behaviour of the risky asset seem to show that, under typical situations, optimal annuitization should occur a few years after retirement.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 12 (2012)
    Issue (Month): 7 (September)
    Pages: 1143-1159

    in new window

    Handle: RePEc:taf:quantf:v:12:y:2012:i:7:p:1143-1159
    DOI: 10.1080/14697680903358248
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:7:p:1143-1159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.