IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v11y2011i9p1379-1392.html
   My bibliography  Save this article

Pricing exotic options using MSL-MC

Author

Listed:
  • Klaus Schmitz Abe

Abstract

Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo pricing method. With this aim in mind, this paper presents a method (MSL-MC) to price exotic options using multi-dimensional SDEs (e.g. stochastic volatility models). Usually, it is the weak convergence property of numerical discretizations that is most important, because, in financial applications, one is mostly concerned with the accurate estimation of expected payoffs. However, in the recently developed Multilevel Monte Carlo path simulation method (ML-MC), the strong convergence property plays a crucial role. We present a modification to the ML-MC algorithm that can be used to achieve better savings. To illustrate these, various examples of exotic options are given using a wide variety of payoffs, stochastic volatility models and the new Multischeme Multilevel Monte Carlo method (MSL-MC). For standard payoffs, both European and Digital options are presented. Examples are also given for complex payoffs, such as combinations of European options (Butterfly Spread, Strip and Strap options). Finally, for path-dependent payoffs, both Asian and Variance Swap options are demonstrated. This research shows how the use of stochastic volatility models and the θ scheme can improve the convergence of the MSL-MC so that the computational cost to achieve an accuracy of O (ε) is reduced from O (ε-super-−3) to O (ε-super-−2) for a payoff under global and non-global Lipschitz conditions.

Suggested Citation

  • Klaus Schmitz Abe, 2011. "Pricing exotic options using MSL-MC," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1379-1392, October.
  • Handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1379-1392
    DOI: 10.1080/14697680903426565
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680903426565
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:11:y:2011:i:9:p:1379-1392. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.