Rejoinder: In-Sample Inference and Forecasting in Misspecified Factor Models
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2016.1191500
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Laurent Ferrara & Anna Simoni, 2023.
"When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers 2019-04, Center for Research in Economics and Statistics.
- Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Post-Print hal-03919944, HAL.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," EconomiX Working Papers 2020-11, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Papers 2007.00273, arXiv.org, revised Sep 2022.
- Laurent Ferrara & Anna Simoni, 2020. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working Papers hal-04159714, HAL.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:3:p:353-356. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.