IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v117y2022i537p428-443.html
   My bibliography  Save this article

Model-Free Feature Screening and FDR Control With Knockoff Features

Author

Listed:
  • Wanjun Liu
  • Yuan Ke
  • Jingyuan Liu
  • Runze Li

Abstract

This article proposes a model-free and data-adaptive feature screening method for ultrahigh-dimensional data. The proposed method is based on the projection correlation which measures the dependence between two random vectors. This projection correlation based method does not require specifying a regression model, and applies to data in the presence of heavy tails and multivariate responses. It enjoys both sure screening and rank consistency properties under weak assumptions. A two-step approach, with the help of knockoff features, is advocated to specify the threshold for feature screening such that the false discovery rate (FDR) is controlled under a prespecified level. The proposed two-step approach enjoys both sure screening and FDR control simultaneously if the prespecified FDR level is greater or equal to 1/s, where s is the number of active features. The superior empirical performance of the proposed method is illustrated by simulation examples and real data applications. Supplementary materials for this article are available online.

Suggested Citation

  • Wanjun Liu & Yuan Ke & Jingyuan Liu & Runze Li, 2022. "Model-Free Feature Screening and FDR Control With Knockoff Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 428-443, January.
  • Handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:428-443
    DOI: 10.1080/01621459.2020.1783274
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1783274
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1783274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yumei Ren & Guoqiang Tang & Xin Li & Xuchang Chen, 2023. "A Study of Multifactor Quantitative Stock-Selection Strategies Incorporating Knockoff and Elastic Net-Logistic Regression," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    2. Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
    3. Konstantin Gorgen & Abdolreza Nazemi & Melanie Schienle, 2022. "Robust Knockoffs for Controlling False Discoveries With an Application to Bond Recovery Rates," Papers 2206.06026, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:117:y:2022:i:537:p:428-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.