IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i533p240-255.html
   My bibliography  Save this article

Statistical Inference for Online Decision Making: In a Contextual Bandit Setting

Author

Listed:
  • Haoyu Chen
  • Wenbin Lu
  • Rui Song

Abstract

Online decision making problem requires us to make a sequence of decisions based on incremental information. Common solutions often need to learn a reward model of different actions given the contextual information and then maximize the long-term reward. It is meaningful to know if the posited model is reasonable and how the model performs in the asymptotic sense. We study this problem under the setup of the contextual bandit framework with a linear reward model. The ε-greedy policy is adopted to address the classic exploration-and-exploitation dilemma. Using the martingale central limit theorem, we show that the online ordinary least squares estimator of model parameters is asymptotically normal. When the linear model is misspecified, we propose the online weighted least squares estimator using the inverse propensity score weighting and also establish its asymptotic normality. Based on the properties of the parameter estimators, we further show that the in-sample inverse propensity weighted value estimator is asymptotically normal. We illustrate our results using simulations and an application to a news article recommendation dataset from Yahoo!. Supplementary materials for this article are available online.

Suggested Citation

  • Haoyu Chen & Wenbin Lu & Rui Song, 2021. "Statistical Inference for Online Decision Making: In a Contextual Bandit Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 240-255, March.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:240-255
    DOI: 10.1080/01621459.2020.1770098
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2020.1770098
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2020.1770098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengjie Zhou & Haoyu Wei & Huiming Zhang, 2024. "Selective Reviews of Bandit Problems in AI via a Statistical View," Papers 2412.02251, arXiv.org.
    2. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    3. Jingwen Zhang & Yifang Chen & Amandeep Singh, 2022. "Causal Bandits: Online Decision-Making in Endogenous Settings," Papers 2211.08649, arXiv.org, revised Feb 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:533:p:240-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.