IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1219-1227.html
   My bibliography  Save this article

Functional Feature Construction for Individualized Treatment Regimes

Author

Listed:
  • Eric B. Laber
  • Ana-Maria Staicu

Abstract

Evidence-based personalized medicine formalizes treatment selection as an individualized treatment regime that maps up-to-date patient information into the space of possible treatments. Available patient information may include static features such race, gender, family history, genetic and genomic information, as well as longitudinal information including the emergence of comorbidities, waxing and waning of symptoms, side-effect burden, and adherence. Dynamic information measured at multiple time points before treatment assignment should be included as input to the treatment regime. However, subject longitudinal measurements are typically sparse, irregularly spaced, noisy, and vary in number across subjects. Existing estimators for treatment regimes require equal information be measured on each subject and thus standard practice is to summarize longitudinal subject information into a scalar, ad hoc summary during data preprocessing. This reduction of the longitudinal information to a scalar feature precedes estimation of a treatment regime and is therefore not informed by subject outcomes, treatments, or covariates. Furthermore, we show that this reduction requires more stringent causal assumptions for consistent estimation than are necessary. We propose a data-driven method for constructing maximally prescriptive yet interpretable features that can be used with standard methods for estimating optimal treatment regimes. In our proposed framework, we treat the subject longitudinal information as a realization of a stochastic process observed with error at discrete time points. Functionals of this latent process are then combined with outcome models to estimate an optimal treatment regime. The proposed methodology requires weaker causal assumptions than Q-learning with an ad hoc scalar summary and is consistent for the optimal treatment regime. Supplementary materials for this article are available online.

Suggested Citation

  • Eric B. Laber & Ana-Maria Staicu, 2018. "Functional Feature Construction for Individualized Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1219-1227, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1219-1227
    DOI: 10.1080/01621459.2017.1321545
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1321545
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1321545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyung G. Park & Danni Wu & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Bayesian Index Models for Heterogeneous Treatment Effects on a Binary Outcome," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 397-418, July.
    2. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    3. Gao, Yuhe & Shi, Chengchun & Song, Rui, 2023. "Deep spectral Q-learning with application to mobile health," LSE Research Online Documents on Economics 119445, London School of Economics and Political Science, LSE Library.
    4. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2023. "Functional additive models for optimizing individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(1), pages 113-126, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1219-1227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.