IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i500p1625-1637.html
   My bibliography  Save this article

A Semiparametric Change-Point Regression Model for Longitudinal Observations

Author

Listed:
  • Haipeng Xing
  • Zhiliang Ying

Abstract

Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject specific, and the number, locations, and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure that combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real dataset is also given.

Suggested Citation

  • Haipeng Xing & Zhiliang Ying, 2012. "A Semiparametric Change-Point Regression Model for Longitudinal Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1625-1637, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1625-1637
    DOI: 10.1080/01621459.2012.712425
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.712425
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1625-1637. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/UASA20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.