IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Mode Identification of Volatility in Time-Varying Autoregression

Listed author(s):
  • Gabriel Chandler
  • Wolfgang Polonik
Registered author(s):

    In many applications, time series exhibit nonstationary behavior that might reasonably be modeled as a time-varying autoregressive (AR) process. In the context of such a model, we discuss the problem of testing for modality of the variance function. We propose a test of modality that is local and, when used iteratively, can be used to identify the total number of modes in a given series. This problem is closely related to peak detection and identification, which has applications in many fields. We propose a test that, under appropriate assumptions, is asymptotically distribution free under the null hypothesis, even though nonparametric estimation of the AR parameter functions is involved. Simulation studies and applications to real datasets illustrate the behavior of the test.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 499 (September)
    Pages: 1217-1229

    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1217-1229
    DOI: 10.1080/01621459.2012.703877
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1217-1229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.