IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Inverse Realized Laplace Transforms for Nonparametric Volatility Density Estimation in Jump-Diffusions

  • Viktor Todorov
  • George Tauchen

This article develops a nonparametric estimator of the stochastic volatility density of a discretely observed It� semimartingale in the setting of an increasing time span and finer mesh of the observation grid. There are two basic steps involved. The first step is aggregating the high-frequency increments into the realized Laplace transform, which is a robust nonparametric estimate of the underlying volatility Laplace transform. The second step is using a regularized kernel to invert the realized Laplace transform. These two steps are relatively quick and easy to compute, so the nonparametric estimator is practicable. The article also derives bounds for the mean squared error of the estimator. The regularity conditions are sufficiently general to cover empirically important cases such as level jumps and possible dependencies between volatility moves and either diffusive or jump moves in the semimartingale. The Monte Carlo analysis in this study indicates that the nonparametric estimator is reliable and reasonably accurate in realistic estimation contexts. An empirical application to 5-min data for three large-cap stocks, 1997--2010, reveals the importance of big short-term volatility spikes in generating high levels of stock price variability over and above those induced by price jumps. The application also shows how to trace out the dynamic response of the volatility density to both positive and negative jumps in the stock price.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

Volume (Year): 107 (2012)
Issue (Month): 498 (June)
Pages: 622-635

in new window

Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:622-635
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:622-635. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.