IDEAS home Printed from
   My bibliography  Save this article

Bayesian quantile regression for ordinal longitudinal data


  • Rahim Alhamzawi
  • Haithem Taha Mohammad Ali


Since the pioneering work by Koenker and Bassett [27], quantile regression models and its applications have become increasingly popular and important for research in many areas. In this paper, a random effects ordinal quantile regression model is proposed for analysis of longitudinal data with ordinal outcome of interest. An efficient Gibbs sampling algorithm was derived for fitting the model to the data based on a location-scale mixture representation of the skewed double-exponential distribution. The proposed approach is illustrated using simulated data and a real data example. This is the first work to discuss quantile regression for analysis of longitudinal data with ordinal outcome.

Suggested Citation

  • Rahim Alhamzawi & Haithem Taha Mohammad Ali, 2018. "Bayesian quantile regression for ordinal longitudinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 815-828, April.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:815-828
    DOI: 10.1080/02664763.2017.1315059

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.
    2. Mohammad Arshad Rahman & Angela Vossmeyer, 2019. "Estimation and Applications of Quantile Regression for Binary Longitudinal Data," Advances in Econometrics, in: Ivan Jeliazkov & Justin L. Tobias (ed.), Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part B, volume 40, pages 157-191, Emerald Publishing Ltd.
    3. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 0. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 0, pages 1-33.
    4. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    5. Manini Ojha & Mohammad Arshad Rahman, 2020. "Do Online Courses Provide an Equal Educational Value Compared to In-Person Classroom Teaching? Evidence from US Survey Data using Quantile Regression," Papers 2007.06994,

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:5:p:815-828. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.