IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i1p129-149.html
   My bibliography  Save this article

Clustering time-course microarray data using functional Bayesian infinite mixture model

Author

Listed:
  • Claudia Angelini
  • Daniela De Canditiis
  • Marianna Pensky

Abstract

This paper presents a new Bayesian, infinite mixture model based, clustering approach, specifically designed for time-course microarray data. The problem is to group together genes which have “similar” expression profiles, given the set of noisy measurements of their expression levels over a specific time interval. In order to capture temporal variations of each curve, a non-parametric regression approach is used. Each expression profile is expanded over a set of basis functions and the sets of coefficients of each curve are subsequently modeled through a Bayesian infinite mixture of Gaussian distributions. Therefore, the task of finding clusters of genes with similar expression profiles is then reduced to the problem of grouping together genes whose coefficients are sampled from the same distribution in the mixture. Dirichlet processes prior is naturally employed in such kinds of models, since it allows one to deal automatically with the uncertainty about the number of clusters. The posterior inference is carried out by a split and merge MCMC sampling scheme which integrates out parameters of the component distributions and updates only the latent vector of the cluster membership. The final configuration is obtained via the maximum a posteriori estimator. The performance of the method is studied using synthetic and real microarray data and is compared with the performances of competitive techniques.

Suggested Citation

  • Claudia Angelini & Daniela De Canditiis & Marianna Pensky, 2012. "Clustering time-course microarray data using functional Bayesian infinite mixture model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 129-149, March.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:129-149
    DOI: 10.1080/02664763.2011.578620
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.578620
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:1:p:129-149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.