IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i10p2289-2302.html
   My bibliography  Save this article

A permutation test approach to the choice of size k for the nearest neighbors classifier

Author

Listed:
  • Yinglei Lai
  • Baolin Wu
  • Hongyu Zhao

Abstract

The k nearest neighbors (k-NN) classifier is one of the most popular methods for statistical pattern recognition and machine learning. In practice, the size k, the number of neighbors used for classification, is usually arbitrarily set to one or some other small numbers, or based on the cross-validation procedure. In this study, we propose a novel alternative approach to decide the size k. Based on a k-NN-based multivariate multi-sample test, we assign each k a permutation test based Z-score. The number of NN is set to the k with the highest Z-score. This approach is computationally efficient since we have derived the formulas for the mean and variance of the test statistic under permutation distribution for multiple sample groups. Several simulation and real-world data sets are analyzed to investigate the performance of our approach. The usefulness of our approach is demonstrated through the evaluation of prediction accuracies using Z-score as a criterion to select the size k. We also compare our approach to the widely used cross-validation approaches. The results show that the size k selected by our approach yields high prediction accuracies when informative features are used for classification, whereas the cross-validation approach may fail in some cases.

Suggested Citation

  • Yinglei Lai & Baolin Wu & Hongyu Zhao, 2011. "A permutation test approach to the choice of size k for the nearest neighbors classifier," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2289-2302.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2289-2302 DOI: 10.1080/02664763.2010.547565
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664763.2010.547565
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
    2. S. Knoth, 2002. "Monitoring the mean and the variance of a stationary process," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(1), pages 77-100.
    3. David Bock, 2008. "Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 213-227.
    4. Christian Sonesson, 2003. "Evaluations of some Exponentially Weighted Moving Average methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1115-1133.
    5. Bersimis, Sotiris & Psarakis, Stelios & Panaretos, John, 2006. "Multivariate Statistical Process Control Charts: An Overview," MPRA Paper 6399, University Library of Munich, Germany.
    6. Clare Marshall & Nicky Best & Alex Bottle & Paul Aylin, 2004. "Statistical issues in the prospective monitoring of health outcomes across multiple units," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 541-559.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2289-2302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.