IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v28y2001i3-4p379-389.html
   My bibliography  Save this article

Observable trend-projecting state-space models

Author

Listed:
  • E. J. Godolphin

Abstract

Much attention has focused in recent years on the use of state-space models for describing and forecasting industrial time series. However, several state-space models that are proposed for such data series are not observable and do not have a unique representation, particularly in situations where the data history suggests marked seasonal trends. This raises major practical difficulties since it becomes necessary to impose one or more constraints and this implies a complicated error structure on the model. The purpose of this paper is to demonstrate that state-space models are useful for describing time series data for forecasting purposes and that there are trend-projecting state-space components that can be combined to provide observable state-space representations for specified data series. This result is particularly useful for seasonal or pseudo-seasonal time series. A well-known data series is examined in some detail and several observable state-space models are suggested and compared favourably with the constrained observable model.

Suggested Citation

  • E. J. Godolphin, 2001. "Observable trend-projecting state-space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 379-389.
  • Handle: RePEc:taf:japsta:v:28:y:2001:i:3-4:p:379-389
    DOI: 10.1080/02664760120034117
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760120034117
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760120034117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:28:y:2001:i:3-4:p:379-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.