IDEAS home Printed from
   My bibliography  Save this article

Trading futures spread portfolios: applications of higher order and recurrent networks


  • Christian Dunis
  • Jason Laws
  • Ben Evans


This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.

Suggested Citation

  • Christian Dunis & Jason Laws & Ben Evans, 2008. "Trading futures spread portfolios: applications of higher order and recurrent networks," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 503-521.
  • Handle: RePEc:taf:eurjfi:v:14:y:2008:i:6:p:503-521
    DOI: 10.1080/13518470801890834

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. Lubnau, Thorben & Todorova, Neda, 2015. "Trading on mean-reversion in energy futures markets," Energy Economics, Elsevier, vol. 51(C), pages 312-319.
    3. Erhard Reschenhofer & Werner Ploberger & Georg Lehecka, 2014. "Detecting fuzzy periodic patterns in futures spreads," Statistical Papers, Springer, vol. 55(2), pages 487-496, May.
    4. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:14:y:2008:i:6:p:503-521. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.