IDEAS home Printed from
   My bibliography  Save this article

The Link Between Statistical Learning Theory and Econometrics: Applications in Economics, Finance, and Marketing


  • Esfandiar Maasoumi
  • Marcelo Medeiros


Statistical Learning refers to statistical aspects of automated extraction of regularities (structure) in datasets. It is a broad area which includes neural networks, regression-trees, nonparametric statistics and sieve approximation, boosting, mixtures of models, computational complexity, computational statistics, and nonlinear models in general. Although Statistical Learning Theory and Econometrics are closely related, much of the development in each of the areas is seemingly proceeding independently. This special issue brings together these two areas, and is intended to stimulate new applications and appreciation in economics, finance, and marketing. This special volume contains ten innovative articles covering a broad range of relevant topics.

Suggested Citation

  • Esfandiar Maasoumi & Marcelo Medeiros, 2010. "The Link Between Statistical Learning Theory and Econometrics: Applications in Economics, Finance, and Marketing," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 470-475.
  • Handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:470-475 DOI: 10.1080/07474938.2010.481544

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    2. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    3. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    4. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," Review of Economic Studies, Oxford University Press, vol. 63(1), pages 145-168.
    5. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    6. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:470-475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.