IDEAS home Printed from https://ideas.repec.org/a/taf/edecon/v33y2025i1p93-120.html
   My bibliography  Save this article

Identifying high-quality teachers

Author

Listed:
  • Kevin Ng

Abstract

This study evaluates techniques to identify high-quality teachers. Since tenure restricts dismissals of experienced teachers, schools must predict productivity and dismiss those expected to perform ineffectively prior to tenure receipt. Many states rely on evaluation scores to guide these personnel decisions without considering other dimensions of teacher performance. I use predictive models to rank teachers based on expected value-added and summative ratings. I then simulate revised personnel decisions and test for changes in average retained teacher performance. In this exercise, I adjust two factors that impact the quality of the predictions: the number of predictors and the length of the pretenure period. Both factors impact the precision of the predictions, though extended pretenure periods also negatively impact selection into teaching. I estimate optimal weights on each performance measure to maximize measures of teacher quality using a range of utility parameters. These improvements are a product of using additional information (value-added) rather than advanced algorithms, as OLS regressions and advanced machine learning techniques produce similar gains. In comparison, prediction models that extend the pretenure period beyond one year do not provide enough additional information to significantly improve average retained teacher performance unless dismissal rates increase dramatically.

Suggested Citation

  • Kevin Ng, 2025. "Identifying high-quality teachers," Education Economics, Taylor & Francis Journals, vol. 33(1), pages 93-120, January.
  • Handle: RePEc:taf:edecon:v:33:y:2025:i:1:p:93-120
    DOI: 10.1080/09645292.2023.2286425
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09645292.2023.2286425
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09645292.2023.2286425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:edecon:v:33:y:2025:i:1:p:93-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CEDE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.