IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v53y2021i1p98-114.html
   My bibliography  Save this article

Stochastic volatility forecasting of the Finnish housing market

Author

Listed:
  • Josephine Dufitinema

Abstract

The purpose of the article is to assess the in-sample fit and the out-of-sample forecasting performances of four stochastic volatility (SV) models in the Finnish housing market. The competing models are the vanilla SV, the SV model where the latent volatility follows a stationary AR(2) process, the heavy-tailed SV and the SV with leverage effects. The models are estimated using Bayesian technique, and the results reveal that the SV with leverage effects is the best model for modelling the Finnish house price volatility. The heavy-tailed SV model provides accurate out-of-sample volatility forecasts in most of the studied regions. Additionally, the models’ performances are noted to vary across almost all cities and sub-areas, and by apartment types. Moreover, the AR(2) component substantially improves the in-sample fit of the standard SV, but it is unimportant for the out-of-sample forecasting performance. The study outcomes have crucial implications, such as portfolio management and investment decision-making. To establish suitable time-series volatility forecasting models of this housing market, these study outcomes will be compared to the performances of their GARCH models counterparts.

Suggested Citation

  • Josephine Dufitinema, 2021. "Stochastic volatility forecasting of the Finnish housing market," Applied Economics, Taylor & Francis Journals, vol. 53(1), pages 98-114, January.
  • Handle: RePEc:taf:applec:v:53:y:2021:i:1:p:98-114
    DOI: 10.1080/00036846.2020.1795074
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2020.1795074
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2020.1795074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2021. "Modelling Returns in US Housing Prices—You’re the One for Me, Fat Tails," JRFM, MDPI, vol. 14(11), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:53:y:2021:i:1:p:98-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.