IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v19y2012i3p195-217.html
   My bibliography  Save this article

Bias Reduction for Pricing American Options by Least-Squares Monte Carlo

Author

Listed:
  • Kin Hung (Felix) Kan
  • R. Mark Reesor

Abstract

We derive an approximation to the bias in regression-based Monte Carlo estimators of American option values. This derivation holds for general asset-price processes of any dimensionality and for general pay-off structures. It uses the large sample properties of least-squares regression estimators. Bias-corrected estimators result by subtracting the bias approximation from the uncorrected estimator at each exercise opportunity. Numerical results show that the bias-corrected estimator outperforms its uncorrected counterpart across all combinations of number of exercise opportunities, option moneyness and sample size. Finally, the results suggest significant computational efficiency increases can be realized through trivial parallel implementations using the corrected estimator.

Suggested Citation

  • Kin Hung (Felix) Kan & R. Mark Reesor, 2012. "Bias Reduction for Pricing American Options by Least-Squares Monte Carlo," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(3), pages 195-217, July.
  • Handle: RePEc:taf:apmtfi:v:19:y:2012:i:3:p:195-217 DOI: 10.1080/1350486X.2011.608566
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2011.608566
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    4. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Erik Schlögl, 2001. "Arbitrage-Free Interpolation in Models of Market Observable Interest Rates," Research Paper Series 71, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Alexander van Haastrecht & Antoon Pelsser, 2011. "Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility," Quantitative Finance, Taylor & Francis Journals, pages 665-691.
    9. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    10. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    11. Grzelak, Lech & Oosterlee, Kees, 2010. "An Equity-Interest Rate Hybrid Model With Stochastic Volatility and the Interest Rate Smile," MPRA Paper 20574, University Library of Munich, Germany.
    12. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Ludkovski, 2015. "Kriging Metamodels and Experimental Design for Bermudan Option Pricing," Papers 1509.02179, arXiv.org, revised Oct 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:19:y:2012:i:3:p:195-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.