IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v79y2025i3p311-319.html
   My bibliography  Save this article

Laplace’s Law of Succession Estimator and M-Statistics

Author

Listed:
  • Eugene Demidenko

Abstract

The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace’s law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace’s law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.

Suggested Citation

  • Eugene Demidenko, 2025. "Laplace’s Law of Succession Estimator and M-Statistics," The American Statistician, Taylor & Francis Journals, vol. 79(3), pages 311-319, July.
  • Handle: RePEc:taf:amstat:v:79:y:2025:i:3:p:311-319
    DOI: 10.1080/00031305.2024.2448430
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2024.2448430
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2024.2448430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:79:y:2025:i:3:p:311-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.