IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v14y2025i1f14_1_1.html
   My bibliography  Save this article

Half Logistic-Topp-Leone Lomax Distribution: Properties and Statistical Inference

Author

Listed:
  • Mavis Pararai
  • Fastel Chipepa
  • Bright Forkenberg

Abstract

A new generalization of the Topp-Leone Lomax distribution was developed. The new distribution is a half logistic transformation of the Topp-Leone Lomax distribution. Some important statistical properties of this new distribution were explored that include raw moments, moment generating function, probability weighted moments, distribution of order statistics, R´enyi entropy, and Shannon entropy. The maximum likelihood estimation (mle) technique was used to estimate the unknown model parameters estimates. Consistency of the mles was assessed via Monte Carlo simulation studies. The mle technique produced consistent estimates based on the simulation studies results and applications to real datasets as demonstrated by means of log-likelihood profile plots. The usefulness the half logistic-Topp Leone Lomax distribution was assessed by means of applications to real world datasets. The model was compared to other generalizations of the Lomax distribution. The new distribution emerged as a good contender to the other generalizations involving the Lomax distribution.   JEL classification numbers: E18, HO, I1, J64, J88.

Suggested Citation

  • Mavis Pararai & Fastel Chipepa & Bright Forkenberg, 2025. "Half Logistic-Topp-Leone Lomax Distribution: Properties and Statistical Inference," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 14(1), pages 1-1.
  • Handle: RePEc:spt:stecon:v:14:y:2025:i:1:f:14_1_1
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%2014_1_1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    2. Gauss M. Cordeiro & Morad Alizadeh & Edwin M. M. Ortega, 2014. "The Exponentiated Half-Logistic Family of Distributions: Properties and Applications," Journal of Probability and Statistics, Hindawi, vol. 2014, pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    3. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    4. Gayan Warahena-Liyanage & Broderick Oluyede & Thatayaone Moakofi & Whatmore Sengweni, 2023. "The New Exponentiated Half Logistic-Harris-G Family of Distributions with Actuarial Measures and Applications," Stats, MDPI, vol. 6(3), pages 1-29, July.
    5. Adebisi A. Ogunde & Subhankar Dutta & Ehab M. Almetawally, 2025. "Half Logistic Generalized Rayleigh Distribution for Modeling Hydrological Data," Annals of Data Science, Springer, vol. 12(2), pages 667-694, April.
    6. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    7. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    8. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    9. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    10. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    11. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    12. Ammara Tanveer & Muhammad Azam & Muhammad Aslam & Muhammad Shujaat Navaz, 2020. "Attribute np control charts using resampling systems for monitoring non-conforming items under exponentiated half-logistic distribution," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 115-143.
    13. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    14. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    15. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    16. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    17. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    18. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    19. Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.
    20. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.

    More about this item

    Keywords

    Half Logistic Transformation; Topp-Leone Lomax Distribution; Maximum Likelihood Estimation; Log-Likelihood Profile Plots; Lomax Distribution.;
    All these keywords.

    JEL classification:

    • I1 - Health, Education, and Welfare - - Health
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search
    • J88 - Labor and Demographic Economics - - Labor Standards - - - Public Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:14:y:2025:i:1:f:14_1_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.