IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i14d10.1007_s11269-023-03629-3.html
   My bibliography  Save this article

Hybrid Extreme Gradient Boosting and Nonlinear Ensemble Models for Suspended Sediment Load Prediction in an Agricultural Catchment

Author

Listed:
  • Gebre Gelete

    (Near East University
    Arsi University)

Abstract

In this study, four individual models namely Hammerstein-Weiner (HW), Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM) and Least Square Support Vector Machine (LSSVM) were utilized for modeling the SSL of Katar catchment in Ethiopia. Then, two strategies were applied to improve the overall predictive accuracy. The first strategy involves the development of four ensemble techniques such as simple average ensemble (SE), weighted average ensemble (WE), neuro-fuzzy ensemble (NFE) and HW ensemble (HWE) using the SSL output of individual models. In the second strategy, a hybrid Extreme Gradient Boosting (XGB) model was developed to improve the performance of the base models. The accuracy of the models was evaluated using the percent bias (Pbias), Nash–Sutcliffe coefficient efficiency (NSE), mean absolute error (MAE), root mean square error (RMSE) and determination coefficient (R2). The result showed that the HW model provided the best modeling result among the individual models with NSE and Pbias values of 0.922 and -8.8%, respectively, for the testing period. Among the ensemble techniques, NFE provided the best performance by increasing the NSE values of the individual models by 4.88% to 62.52%, during the testing period. Examination of the hybrid XGB models showed that all hybrid models performed reliably, with the HW-XGB model achieving the best predictive performance (NSE = 0.989). Overall, the results of this study showed the promising potential of ensemble and hybrid XGB models for SSL modeling in an agricultural catchment.

Suggested Citation

  • Gebre Gelete, 2023. "Hybrid Extreme Gradient Boosting and Nonlinear Ensemble Models for Suspended Sediment Load Prediction in an Agricultural Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(14), pages 5759-5787, November.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03629-3
    DOI: 10.1007/s11269-023-03629-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03629-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03629-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peiqiang Gao & Wenfeng Du & Qingwen Lei & Juezhi Li & Shuaiji Zhang & Ning Li, 2023. "NDVI Forecasting Model Based on the Combination of Time Series Decomposition and CNN – LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1481-1497, March.
    2. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    3. Hai Tao & Behrooz Keshtegar & Zaher Mundher Yaseen, 2019. "The Feasibility of Integrative Radial Basis M5Tree Predictive Model for River Suspended Sediment Load Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4471-4490, October.
    4. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3405-3422, August.
    5. Siyamak Doroudi & Ahmad Sharafati & Seyed Hossein Mohajeri & Haitham Afan, 2021. "Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method," Complexity, Hindawi, vol. 2021, pages 1-13, March.
    6. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    7. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    8. Jenq-Tzong Shiau & Ting-Ju Chen, 2015. "Quantile Regression-Based Probabilistic Estimation Scheme for Daily and Annual Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2805-2818, June.
    9. Hamid Moeeni & Hossein Bonakdari, 2018. "Impact of Normalization and Input on ARMAX-ANN Model Performance in Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 845-863, February.
    10. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    11. Vahid Nourani & Amir Molajou & Ali Davanlou Tajbakhsh & Hessam Najafi, 2019. "A Wavelet Based Data Mining Technique for Suspended Sediment Load Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1769-1784, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bibhuti Bhusan Sahoo & Sovan Sankalp & Ozgur Kisi, 2023. "A Novel Smoothing-Based Deep Learning Time-Series Approach for Daily Suspended Sediment Load Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(11), pages 4271-4292, September.
    2. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    3. Lubna Jamal Chachan, 2022. "Models for Predicting River Suspended Sediment Load Using Machine Learning: A Survey," Technium, Technium Science, vol. 4(1), pages 239-249.
    4. Khabat Khosravi & Ali Golkarian & John P. Tiefenbacher, 2022. "Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 699-716, January.
    5. Sarita Gajbhiye Meshram & Vijay P. Singh & Ozgur Kisi & Vahid Karimi & Chandrashekhar Meshram, 2020. "Application of Artificial Neural Networks, Support Vector Machine and Multiple Model-ANN to Sediment Yield Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4561-4575, December.
    6. Rana Muhammad Adnan & Kulwinder Singh Parmar & Salim Heddam & Shamsuddin Shahid & Ozgur Kisi, 2021. "Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    7. Nikolaos Efthimiou, 2025. "Suspended Load Estimation in Data Scarce Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(1), pages 311-378, January.
    8. Maryam Rahimzad & Alireza Moghaddam Nia & Hosam Zolfonoon & Jaber Soltani & Ali Danandeh Mehr & Hyun-Han Kwon, 2021. "Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4167-4187, September.
    9. Reza Piraei & Seied Hosein Afzali & Majid Niazkar, 2023. "Assessment of XGBoost to Estimate Total Sediment Loads in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(13), pages 5289-5306, October.
    10. Laís Coelho Teixeira & Priscila Pacheco Mariani & Olavo Correa Pedrollo & Nilza Maria Castro & Vanessa Sari, 2020. "Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3709-3723, September.
    11. Bassam Tawabini & Mohamed A. Yassin & Mohammed Benaafi & John Adedapo Adetoro & Abdulaziz Al-Shaibani & S. I. Abba, 2022. "Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    12. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    13. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.
    14. Mohammed Achite & Saeed Samadianfard & Nehal Elshaboury & Milad Sharafi, 2023. "Modeling and optimization of coagulant dosage in water treatment plants using hybridized random forest model with genetic algorithm optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11189-11207, October.
    15. Zohreh Sheikh Khozani & Elimar Precht & Monica Ionita, 2025. "Weekly streamflow forecasting of Rhine river based on machine learning approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4135-4153, March.
    16. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    17. Vanessa Sari & Nilza Maria Reis Castro & Olavo Correa Pedrollo, 2017. "Estimate of Suspended Sediment Concentration from Monitored Data of Turbidity and Water Level Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4909-4923, December.
    18. Tahsin Baykal, 2025. "Joint frequency analysis of streamflow and sediment amount with copula functions in the Kızlırmak Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4219-4238, March.
    19. Kai Zhang & Wang Xuan & Bai Yikui & Xu Xiuquan, 2021. "Prediction of sediment transport capacity based on slope gradients and flow discharge," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-14, September.
    20. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:14:d:10.1007_s11269-023-03629-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.