IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i9d10.1007_s11269-021-02863-x.html
   My bibliography  Save this article

A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters

Author

Listed:
  • Arash Adib

    (Shahid Chamran University of Ahvaz)

  • Arash Zaerpour

    (Shahid Chamran University of Ahvaz)

  • Ozgur Kisi

    (Ilia State University)

  • Morteza Lotfirad

    (Shahid Chamran University of Ahvaz)

Abstract

This study demonstrates the application of wavelet transform comprising discrete wavelet transform, maximum overlap discrete wavelet transform (MODWT), and multiresolution-based MODWT (MODWT-MRA), as well as wavelet packet transform (WP), coupled with artificial intelligence (AI)-based models including multi-layer perceptron, radial basis function, adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming to retrieve snow depth (SD) from special sensor microwave imager sounder obtained from the national snow and ice data center. Different mother wavelets were applied to the passive microwave (PM) frequencies; afterward, the dominant resultant decomposed subseries comprising low frequencies (approximations) and high frequencies (details) were detected and inserted into the AI-based models. The results indicated that the WP coupled with ANFIS (WP-ANFIS) outperformed the other studied models with the determination coefficient of 0.988, root mean square error of 3.458 cm, mean absolute error of 2.682 cm, and Nash–Sutcliffe efficiency of 0.987 during testing period. The final verification also confirmed that the WP is a promising pre-processing technique to improve the accuracy of the AI-based models in SD evaluation from PM data.

Suggested Citation

  • Arash Adib & Arash Zaerpour & Ozgur Kisi & Morteza Lotfirad, 2021. "A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2723-2740, July.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02863-x
    DOI: 10.1007/s11269-021-02863-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02863-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02863-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi Ansari & Safar Marofi & Mohamad Mohamadi, 2019. "Topography and Land Cover Effects on Snow Water Equivalent Estimation Using AMSR-E and GLDAS Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1699-1715, March.
    2. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    3. Hazi Azamathulla & Aminuddin Ghani & Cheng Leow & Chun Chang & Nor Zakaria, 2011. "Gene-Expression Programming for the Development of a Stage-Discharge Curve of the Pahang River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2901-2916, September.
    4. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Wang & Yanlong Guo & Manhong Fan, 2022. "Improving Annual Streamflow Prediction by Extracting Information from High-frequency Components of Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4535-4555, September.
    2. Shuhui Guo & Lihua Xiong & Jie Chen & Shenglian Guo & Jun Xia & Ling Zeng & Chong-Yu Xu, 2023. "Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 659-681, January.
    3. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    4. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    5. E. Fallah-Mehdipour & O. Bozorg Haddad & H. Orouji & M. Mariño, 2013. "Application of Genetic Programming in Stage Hydrograph Routing of Open Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3261-3272, July.
    6. Seydou Traore & Aytac Guven, 2012. "Regional-Specific Numerical Models of Evapotranspiration Using Gene-Expression Programming Interface in Sahel," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4367-4380, December.
    7. H. Azamathulla & Robert Jarrett, 2013. "Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 715-729, February.
    8. Erhao Meng & Shengzhi Huang & Qiang Huang & Linyin Cheng & Wei Fang, 2021. "The Reconstruction and Extension of Terrestrial Water Storage Based on a Combined Prediction Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5291-5306, December.
    9. Yassin, Mohamed A. & Alazba, A.A. & Mattar, Mohamed A., 2016. "Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate," Agricultural Water Management, Elsevier, vol. 163(C), pages 110-124.
    10. Subbarayan Saravanan & Nagireddy Masthan Reddy & Quoc Bao Pham & Abdullah Alodah & Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi, 2023. "Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    11. Tabasum Rasool & A. Q. Dar & M. A. Wani, 2021. "Development of a Predictive Equation for Modelling the Infiltration Process Using Gene Expression Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1871-1888, April.
    12. Jihong Qu & Kun Ren & Xiaoyu Shi, 2021. "Binary Grey Wolf Optimization-Regularized Extreme Learning Machine Wrapper Coupled with the Boruta Algorithm for Monthly Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1029-1045, February.
    13. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Rabin Chakrabortty & Subodh Chandra Pal & Saeid Janizadeh & M. Santosh & Paramita Roy & Indrajit Chowdhuri & Asish Saha, 2021. "Impact of Climate Change on Future Flood Susceptibility: an Evaluation Based on Deep Learning Algorithms and GCM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4251-4274, September.
    16. E. Fallah-Mehdipour & O. Bozorg Haddad & M. Mariño, 2012. "Real-Time Operation of Reservoir System by Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4091-4103, November.
    17. Anas Mahmood Al-Juboori & Aytac Guven, 2016. "Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2517-2530, May.
    18. Sadhan Malik & Subodh Chandra Pal & Alireza Arabameri & Indrajit Chowdhuri & Asish Saha & Rabin Chakrabortty & Paramita Roy & Biswajit Das, 2021. "GIS-based statistical model for the prediction of flood hazard susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16713-16743, November.
    19. Vasileios Kitsikoudis & Epaminondas Sidiropoulos & Lazaros Iliadis & Vlassios Hrissanthou, 2015. "A Machine Learning Approach for the Mean Flow Velocity Prediction in Alluvial Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4379-4395, September.
    20. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:9:d:10.1007_s11269-021-02863-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.