IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i13d10.1007_s11269-021-02968-3.html
   My bibliography  Save this article

Adaptive Metaheuristic Scheme for Generalized Multiple Abnormality Detection in a Reservoir Pipeline Valve System

Author

Listed:
  • S. Kim

    (Pusan National University)

Abstract

This paper presents mathematical and algorithmic developments related to general abnormality (multiple leakages and multiple partial blockages) detection in a simple pipeline system. Formulations for leakages and blockages were combined and reformulated to address general abnormalities efficiently in the frequency domain. Unsteady friction effects on laminar and turbulent flow conditions were considered during formulation development using 2D frequency-dependent and 1D acceleration-based models, respectively. The developed formula was tested in terms of model parsimony, computational accuracy, and flexibility for superposition in abnormality representation. Based on the proposed formulation, a novel multiple abnormality detection algorithm, called the adaptive metaheuristic scheme (AMS), was developed by integrating a stepwise genetic algorithm. The application of the developed method to a hypothetical pipeline system demonstrated the potential of the AMS for predicting general features of abnormality, even without access to prior information regarding the number and distribution of abnormalities. The developed method demonstrated robustness for the prediction of abnormality distributions and reliability, even in noise-contaminated signals. The adaptive predictability of the AMS can be characterized by not only its robustness for unknown multiple abnormality features but also its self-diagnostic capabilities during the calibration procedure.

Suggested Citation

  • S. Kim, 2021. "Adaptive Metaheuristic Scheme for Generalized Multiple Abnormality Detection in a Reservoir Pipeline Valve System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4581-4600, October.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02968-3
    DOI: 10.1007/s11269-021-02968-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02968-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02968-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauro Marchis & Barbara Milici, 2019. "Leakage Estimation in Water Distribution Network: Effect of the Shape and Size Cracks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1167-1183, February.
    2. Jinzhe Gong & Martin F. Lambert & Mark L. Stephens & Benjamin S. Cazzolato & Chi Zhang, 2020. "Detection of Emerging through-Wall Cracks for Pipe Break Early Warning in Water Distribution Systems Using Permanent Acoustic Monitoring and Acoustic Wave Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2419-2432, June.
    3. Sanghyun Kim, 2016. "Impedance Method for Abnormality Detection of a Branched Pipeline System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1101-1115, February.
    4. Caterina Capponi & Silvia Meniconi & Pedro J. Lee & Bruno Brunone & Marco Cifrodelli, 2020. "Time-domain Analysis of Laboratory Experiments on the Transient Pressure Damping in a Leaky Polymeric Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 501-514, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caterina Capponi & Silvia Meniconi & Pedro J. Lee & Bruno Brunone & Marco Cifrodelli, 2020. "Time-domain Analysis of Laboratory Experiments on the Transient Pressure Damping in a Leaky Polymeric Pipe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 501-514, January.
    2. Sanghyun Kim, 2019. "Valve Maneuver Prediction in Simple and Complicated Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4671-4685, November.
    3. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    4. Sang Hyun Kim, 2023. "Generalized Impedance-based Transient Analysis for Multi-branched Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1581-1597, March.
    5. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Huan-Feng Duan, 2018. "Accuracy and Sensitivity Evaluation of TFR Method for Leak Detection in Multiple-Pipeline Water Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2147-2164, April.
    7. Juan Li & Ying Wu & Wenjun Zheng & Changgang Lu, 2021. "A Model-Based Bayesian Framework for Pipeline Leakage Enumeration and Location Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4381-4397, October.
    8. Tamás Huzsvár & Richárd Wéber & Marcell Szabó & Csaba Hős, 2023. "Optimal Placement and Settings of Valves for Leakage Reduction in Real Life Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4949-4967, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02968-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.