IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i4d10.1007_s11269-017-1863-7.html
   My bibliography  Save this article

Integrated Methodological Framework for Assessing the Risk of Failure in Water Supply Incorporating Drought Forecasts. Case Study: Andean Regulated River Basin

Author

Listed:
  • Alex Avilés

    (Universidad de Cuenca)

  • Abel Solera Solera

    (Universitat Politècnica de València)

  • Javier Paredes-Arquiola

    (Universitat Politècnica de València)

  • María Pedro-Monzonís

    (Universitat Politècnica de València)

Abstract

Hydroclimatic drought conditions can affect the hydrological services offered by mountain river basins causing severe impacts on the population, becoming a challenge for water resource managers in Andean river basins. This study proposes an integrated methodological framework for assessing the risk of failure in water supply, incorporating probabilistic drought forecasts, which assists in making decisions regarding the satisfaction of consumptive, non-consumptive and environmental requirements under water scarcity conditions. Monte Carlo simulation was used to assess the risk of failure in multiple stochastic scenarios, which incorporate probabilistic forecasts of drought events based on a Markov chains (MC) model using a recently developed drought index (DI). This methodology was tested in the Machángara river basin located in the south of Ecuador. Results were grouped in integrated satisfaction indexes of the system (DSIG). They demonstrated that the incorporation of probabilistic drought forecasts could better target the projections of simulation scenarios, with a view of obtaining realistic situations instead of optimistic projections that would lead to riskier decisions. Moreover, they contribute to more effective results in order to propose multiple alternatives for prevention and/or mitigation under drought conditions.

Suggested Citation

  • Alex Avilés & Abel Solera Solera & Javier Paredes-Arquiola & María Pedro-Monzonís, 2018. "Integrated Methodological Framework for Assessing the Risk of Failure in Water Supply Incorporating Drought Forecasts. Case Study: Andean Regulated River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1209-1223, March.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1863-7
    DOI: 10.1007/s11269-017-1863-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1863-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1863-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Paulo & Luis Pereira, 2007. "Prediction of SPI Drought Class Transitions Using Markov Chains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1813-1827, October.
    2. Giuseppe Rossi & Antonino Cancelliere, 2013. "Managing drought risk in water supply systems in Europe: a review," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(2), pages 272-289, June.
    3. David Haro & Abel Solera & Javier Paredes & Joaquín Andreu, 2014. "Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3801-3814, September.
    4. A. Cancelliere & G. Mauro & B. Bonaccorso & G. Rossi, 2007. "Drought forecasting using the Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 801-819, May.
    5. Giuseppe Rossi & Enrica Caporali & Luis Garrote, 2012. "Definition of Risk Indicators for Reservoirs Management Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 981-996, March.
    6. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    2. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    3. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    4. Jianzhu Li & Shuhan Zhou & Rong Hu, 2016. "Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 669-684, January.
    5. Antonino Cancelliere, 2017. "Non Stationary Analysis of Extreme Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3097-3110, August.
    6. Alex Avilés & Rolando Célleri & Javier Paredes & Abel Solera, 2015. "Evaluation of Markov Chain Based Drought Forecasts in an Andean Regulated River Basin Using the Skill Scores RPS and GMSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1949-1963, April.
    7. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    8. Hossein Tabari & Reza Zamani & Hossein Rahmati & Patrick Willems, 2015. "Markov Chains of Different Orders for Streamflow Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3441-3457, July.
    9. T. Sharma & U. Panu, 2014. "A Simplified Model for Predicting Drought Magnitudes: a Case of Streamflow Droughts in Canadian Prairies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1597-1611, April.
    10. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    11. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    12. Chen-Feng Yeh & Jinge Wang & Hsin-Fu Yeh & Cheng-Haw Lee, 2015. "SDI and Markov Chains for Regional Drought Characteristics," Sustainability, MDPI, vol. 7(8), pages 1-20, August.
    13. Jie Yang & Yimin Wang & Jianxia Chang & Jun Yao & Qiang Huang, 2016. "Integrated assessment for hydrometeorological drought based on Markov chain model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1137-1160, November.
    14. T. Sharma & U. Panu, 2013. "Predicting Drought Magnitudes: A Parsimonious Model for Canadian Hydrological Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 649-664, February.
    15. Desalegn Edossa & Mukand Babel & Ashim Das Gupta, 2010. "Drought Analysis in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1441-1460, May.
    16. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    17. Nadia Shahraki & Safar Marofi & Sadegh Ghazanfari, 2019. "Modeling of Daily Rainfall Extremes, Using a Semi-Parametric Pareto Tail Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 493-508, January.
    18. Hsin-Fu Yeh & Hsin-Li Hsu, 2019. "Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and Linkage with Atmospheric Circulation," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    19. David Haro & Abel Solera & Javier Paredes & Joaquín Andreu, 2014. "Methodology for Drought Risk Assessment in Within-year Regulated Reservoir Systems. Application to the Orbigo River System (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3801-3814, September.
    20. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1863-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.