IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1622-9.html
   My bibliography  Save this article

Hydrological Model of LID with Rainfall-Watershed-Bioretention System

Author

Listed:
  • Sezar Gülbaz

    (Istanbul University)

  • Cevza Melek Kazezyılmaz-Alhan

    (Istanbul University)

Abstract

Sustainable water management is crucial in the reduction of water pollution and floods. New techniques should be investigated in order to avoid present and future problems such as flood, drought, and water contamination. For this purpose, Low Impact Development-Best Management Practice (LID-BMP) has recently come into the stage in storm water management. Vegetative swales, green roofs, bioretentions, storm water wetlands, rain barrels, permeable asphalts and pavements are among LID-BMPs. Bioretention type of LID is implemented to diminish adverse effects of urbanization such as flood by reducing peak flows on surface and thus managing storm water runoff. The aim of this study is to investigate the hydrological performance of bioretentions by developing a hydrological model based on the data obtained using experimental setup called Rainfall-Watershed-Bioretention (RWB). The hydrological model of RWB (HM-RWB) consists of two main components: (i) rainfall-runoff model in which kinematic wave theory is used for simulation of surface runoff generated over the drainage area that reaches the bioretention as inflow; (ii) runoff-bioretention flow model in which Green-Ampt method under unsteady rainfall is employed and further improved by incorporating the effect of ponding depth on bioretention for the simulation of outflow at the exit of the bioretention. It is observed that the results of the hydrological model developed herein are in good agreement with the measured data obtained in the RWB experimental setup.

Suggested Citation

  • Sezar Gülbaz & Cevza Melek Kazezyılmaz-Alhan, 2017. "Hydrological Model of LID with Rainfall-Watershed-Bioretention System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1931-1946, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1622-9
    DOI: 10.1007/s11269-017-1622-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1622-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1622-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shouhong Zhang & Yiping Guo, 2014. "Stormwater Capture Efficiency of Bioretention Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 149-168, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Tang & W. Luo & Z. Jia & W. Liu & S. Li & Y. Wu, 2016. "Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 983-1000, February.
    2. Yiping Guo & Shouhong Zhang & Shuguang Liu, 2014. "Runoff Reduction Capabilities and Irrigation Requirements of Green Roofs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1363-1378, March.
    3. Jun Wang & Yiping Guo, 2020. "Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3809-3821, September.
    4. Jun Wang & Shouhong Zhang & Yiping Guo, 2019. "Analyzing the Impact of Impervious Area Disconnection on Urban Runoff Control Using an Analytical Probabilistic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1753-1768, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1622-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.