IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i13p3461-3485.html
   My bibliography  Save this article

Intrinsic Vulnerability Assessment for the Alluvial Aquifer in the Northern Part of Jordan Valley

Author

Listed:
  • Hani Al-Amoush
  • Nezar Hammouri
  • Franz Zunic
  • Elias Salameh

Abstract

The Northern Jordan Valley (NJV) is an important and significant water basin in Jordan where most of Jordan’s agricultural crops are produced. Knowing that the aquifer system is mainly composed of alluvial deposits, it is important to assess the potential of ground water for pollution. For this purpose intrinsic vulnerability was assessed using SINTACS model with the aid of geographic information system (GIS) techniques. The final results show that about 40% of the investigated area has been classified as high to very high vulnerable to groundwater pollution. These results were correlated with measured concentration of nitrate (NO $_{3}^{-1})$ at different locations. A high correlation was found between areas of high nitrate concentrations and those of high vulnerability category. To validate the model results, a sensitivity analysis has been carried out to assess the influence of each of SINTACS parameters on the obtained vulnerability values. It was found that the soil overburden attenuation capacity parameter (T) and the depth to the groundwater parameter (S) are the most sensitive parameters to SINTACS vulnerability model. The effective-weights analysis was also performed in this study to revise the weights in the computed vulnerability index. It was noticed that the effective weights for each parameter were sometimes varies from the theoretical weights assigned by the SINTACS method. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Hani Al-Amoush & Nezar Hammouri & Franz Zunic & Elias Salameh, 2010. "Intrinsic Vulnerability Assessment for the Alluvial Aquifer in the Northern Part of Jordan Valley," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3461-3485, October.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3461-3485
    DOI: 10.1007/s11269-010-9615-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9615-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9615-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali El-Naqa & Ammar Al-Shayeb, 2009. "Groundwater Protection and Management Strategy in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2379-2394, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Mohanty & Madan Jha & Ashwani Kumar & S. Jena, 2012. "Hydrologic and Hydrogeologic Characterization of a Deltaic Aquifer System in Orissa, Eastern India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1899-1928, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Temmerman, Fitzgerald, 2011. "Virtual Water Trade and International Trade Law," Papers 212, World Trade Institute.
    2. Faisal Aburub & Wa’el Hadi, 2018. "A New Associative Classification Algorithm for Predicting Groundwater Locations," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-26, December.
    3. Yahia A. Othman & Monther Tahat & Kholoud M. Alananbeh & Malik Al-Ajlouni, 2022. "Arbuscular Mycorrhizal Fungi Inoculation Improves Flower Yield and Postharvest Quality Component of Gerbera Grown under Different Salinity Levels," Agriculture, MDPI, vol. 12(7), pages 1-12, July.
    4. Frank Ward & Manuel Pulido-Velazquez, 2012. "Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2883-2909, August.
    5. Sigel, Katja & Klassert, Christian & Zozmann, Heinrich & Talozi, Samer & Klauer, Bernd & Gawel, Erik, 2017. "Urban water supply through private tanker water markets: An empirical market analysis of Amman, Jordan," UFZ Reports 02/2017, Helmholtz Centre for Environmental Research (UFZ).
    6. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    7. Adrian Werner & Qi Zhang & Lijuan Xue & Brian Smerdon & Xianghu Li & Xinjun Zhu & Lei Yu & Ling Li, 2013. "An Initial Inventory and Indexation of Groundwater Mega-Depletion Cases," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 507-533, January.
    8. Chen-Wuing Liu & Yen-Lu Chou & Shien-Tsung Lin & Gin-Jie Lin & Cheng-Shin Jang, 2010. "Management of High Groundwater Level Aquifer in the Taipei Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3513-3525, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:13:p:3461-3485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.