IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v13y1999i1p39-57.html
   My bibliography  Save this article

Sorghum Water Loss in Relation to Irrigation Treatment

Author

Listed:
  • N. Dercas
  • A. Liakatas

Abstract

Aiming towards rational irrigation water management in a seasonally dry climate, sorghum water losses via evapotranspiration were studied during a two-year experiment in relation to irrigation treatments in Central Greece. Relative to high irrigation (IH), that provided the root depth with 458 mm of water in 1994 and 512 mm in 1995, 56 and 64% of the water was supplied by the medium (IM) and 34 and 46% by the low (IL) treatments, respectively, during the two years. A fourth treatment (IHA) was performed like (IH) until the end of anthesis, when irrigation stopped. Gravimetric soil moisture was measured, biometric measurements were taken and all meteorological parameters required to estimate evapotranspiration by the Penman–Monteith equation were logged. A model estimating sorghum actual water loss was first run with the 1994 data. During the model-establishment year, it was found that (a) surface resistance rs, consisting of a canopy rsc and a soil rss resistance acting in parallel, was almost exclusively dependent on soil water shortage, (b) under the IM and IL irrigation treatments, the lowest possible (immediately after water application) canopy resistance r'sc, higher than the (IH) minimum canopy resistance rsc (min)=40 sm-1, was irrigation-deficit dependent and (c) the rss (min) was as high as 1200 sm-1, common to all treatments. The model established was then verified with the 1995 data and used to calculate the crop coefficient kc values for sorghum. The model, although tending to underestimate actual evapotranspiration by 4–10%, depending on the treatment, may be considered as reliable. The kc values calculated are considerably higher than the kc values suggested for sorghum by the Food and Agriculture Organization (FAO). Therefore, taking also into account that any additional mm of water supplied results in an increase of 0.052 t of dry biomass per hectare, higher irrigation water applications could be recommended, although the low irrigation treatment made slightly better use of water. Copyright Kluwer Academic Publishers 1999

Suggested Citation

  • N. Dercas & A. Liakatas, 1999. "Sorghum Water Loss in Relation to Irrigation Treatment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(1), pages 39-57, February.
  • Handle: RePEc:spr:waterr:v:13:y:1999:i:1:p:39-57
    DOI: 10.1023/A:1008026119228
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1008026119228
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1008026119228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Novak, Viliam, 1987. "Estimation of soil-water extraction patterns by roots," Agricultural Water Management, Elsevier, vol. 12(4), pages 271-278, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Dercas & A. Liakatas, 2007. "Water and Radiation Effect on Sweet Sorghum Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1585-1600, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarkar, S. & Kar, S., 1995. "Comparison between simulated and measured profile water distribution," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 341-350, July.
    2. Sarkar, S. & Biswas, M. & Goswami, S.B. & Bandyopadhyay, P.K., 2010. "Yield and water use efficiency of cauliflower under varying irrigation frequencies and water application methods in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1655-1662, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:13:y:1999:i:1:p:39-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.