Zero-sum stochastic games with the average-value-at-risk criterion
Author
Abstract
Suggested Citation
DOI: 10.1007/s11750-023-00655-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Basu, Arnab & Ghosh, Mrinal Kanti, 2014. "Zero-sum risk-sensitive stochastic games on a countable state space," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 961-983.
- Nicole Bäuerle & Jonathan Ott, 2011. "Markov Decision Processes with Average-Value-at-Risk criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 361-379, December.
- Wenzhao Zhang & Yonghui Huang & Xianping Guo, 2014. "Nonzero-sum constrained discrete-time Markov games: the case of unbounded costs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1074-1102, October.
- Kang Boda & Jerzy Filar, 2006. "Time Consistent Dynamic Risk Measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 169-186, February.
- Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
- Arnab Basu & Mrinal K. Ghosh, 2012. "Zero-Sum Risk-Sensitive Stochastic Differential Games," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 437-449, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Seungki Min & Ciamac C. Moallemi & Costis Maglaras, 2022. "Risk-Sensitive Optimal Execution via a Conditional Value-at-Risk Objective," Papers 2201.11962, arXiv.org.
- Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
- Jonathan Eckstein & Deniz Eskandani & Jingnan Fan, 2016. "Multilevel Optimization Modeling for Risk-Averse Stochastic Programming," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 112-128, February.
- Charilaos Mertzanis, 2013. "Risk Management Challenges after the Financial Crisis," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 42(3), pages 285-320, November.
- Özlem Çavuş & Andrzej Ruszczyński, 2014. "Computational Methods for Risk-Averse Undiscounted Transient Markov Models," Operations Research, INFORMS, vol. 62(2), pages 401-417, April.
- Avinash N. Madavan & Subhonmesh Bose, 2021. "A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 428-460, August.
- F. Godin, 2016. "Minimizing CVaR in global dynamic hedging with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 461-475, March.
- Bäuerle Nicole & Mundt André, 2009. "A Bayesian approach to incorporate model ambiguity in a dynamic risk measure," Statistics & Risk Modeling, De Gruyter, vol. 26(3), pages 219-242, April.
- Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
- Li Xia & Luyao Zhang & Peter W. Glynn, 2023. "Risk‐sensitive Markov decision processes with long‐run CVaR criterion," Production and Operations Management, Production and Operations Management Society, vol. 32(12), pages 4049-4067, December.
- Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
- van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
- Christopher W. Miller & Insoon Yang, 2015. "Optimal Control of Conditional Value-at-Risk in Continuous Time," Papers 1512.05015, arXiv.org, revised Jan 2017.
- Nicole Bäuerle & Jonathan Ott, 2011. "Markov Decision Processes with Average-Value-at-Risk criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 361-379, December.
- Cui, Xiangyu & Gao, Jianjun & Shi, Yun & Zhu, Shushang, 2019. "Time-consistent and self-coordination strategies for multi-period mean-Conditional Value-at-Risk portfolio selection," European Journal of Operational Research, Elsevier, vol. 276(2), pages 781-789.
- Arnab Basu & Mrinal K. Ghosh, 2018. "Nonzero-Sum Risk-Sensitive Stochastic Games on a Countable State Space," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 516-532, May.
- Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
- Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
- Dominique Guégan & Wayne Tarrant, 2012.
"On the necessity of five risk measures,"
Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Documents de travail du Centre d'Economie de la Sorbonne 10005, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Wayne Tarrant, 2012. "On the Necessity of Five Risk Measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00721339, HAL.
- Dominique Guegan & Wayne Tarrant, 2010. "On the necessity of five risk measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00460901, HAL.
- Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
More about this item
Keywords
Discrete-time stochastic games; Average-value-at-risk; Saddle point; State-dependent;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:31:y:2023:i:3:d:10.1007_s11750-023-00655-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.