IDEAS home Printed from
   My bibliography  Save this article

Characterizations and applications of generalized invexity and monotonicity in Asplund spaces


  • M. Soleimani-damaneh



In this paper, the concepts of invexity, monotonicity, and their generalizations in Asplund spaces are studied. Some characterizations for several kinds of generalized invexity and monotonicity concepts are given, using the properties of Mordukhovich limiting subdifferentials in Asplund spaces; and some applications in mathematical programming are provided. Also, some necessary and sufficient weak Pareto-optimality conditions for a multiple-objective optimization problem are proved. Copyright Sociedad de Estadística e Investigación Operativa 2012

Suggested Citation

  • M. Soleimani-damaneh, 2012. "Characterizations and applications of generalized invexity and monotonicity in Asplund spaces," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 592-613, October.
  • Handle: RePEc:spr:topjnl:v:20:y:2012:i:3:p:592-613
    DOI: 10.1007/s11750-010-0150-z

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Soleimani-damaneh, M., 2008. "Infinite (semi-infinite) problems to characterize the optimality of nonlinear optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 49-56, July.
    2. Yang, X. M. & Yang, X. Q. & Teo, K. L., 2005. "Criteria for generalized invex monotonicities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 115-119, July.
    3. Peng, Jian-Wen, 2006. "Criteria for generalized invex monotonicities without Condition C," European Journal of Operational Research, Elsevier, vol. 170(2), pages 667-671, April.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:20:y:2012:i:3:p:592-613. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.