IDEAS home Printed from
   My bibliography  Save this article

Assessment of variance components in nonlinear mixed-effects elliptical models


  • Cibele Russo


  • Reiko Aoki


  • Gilberto Paula



The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle ( 1995 ). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter ( 1992 ) and fitted using the model presented in Russo et al. ( 2009 ). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification. Copyright Sociedad de Estadística e Investigación Operativa 2012

Suggested Citation

  • Cibele Russo & Reiko Aoki & Gilberto Paula, 2012. "Assessment of variance components in nonlinear mixed-effects elliptical models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 519-545, September.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:3:p:519-545
    DOI: 10.1007/s11749-011-0262-2

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Patriota, Alexandre G., 2011. "A note on influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 218-225, January.
    2. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.
    3. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457.
    4. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    5. Cysneiros, Francisco Jose A. & Paula, Gilberto A., 2005. "Restricted methods in symmetrical linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 689-708, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zaixing Li & Fei Chen & Lixing Zhu, 2014. "Variance Components Testing in ANOVA-Type Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 482-496, June.
    2. Li, Zaixing, 2015. "A residual-based test for variance components in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 73-78.
    3. Chen, Fei & Li, Zaixing & Shi, Lei & Zhu, Lixing, 2015. "Inference for mixed models of ANOVA type with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 382-401.
    4. repec:spr:testjl:v:26:y:2017:i:4:d:10.1007_s11749-017-0532-8 is not listed on IDEAS
    5. repec:spr:sankhb:v:79:y:2017:i:1:d:10.1007_s13571-016-0116-8 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:3:p:519-545. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.