IDEAS home Printed from
   My bibliography  Save this article

Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed


  • Nadia Solaro


  • Pier Ferrari



In this paper we examine maximum likelihood estimation procedures in multilevel models for two level nesting structures. Usually, for fixed effects and variance components estimation, level-one error terms and random effects are assumed to be normally distributed. Nevertheless, in some circumstances this assumption might not be realistic, especially as concerns random effects. Thus we assume for random effects the family of multivariate exponential power distributions (MEP); subsequently, by means of Monte Carlo simulation procedures, we study robustness of maximum likelihood estimators under normal assumption when, actually, random effects are MEP distributed.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nadia Solaro & Pier Ferrari, 2007. "Robustness of Parameter Estimation Procedures in Multilevel Models When Random Effects are MEP Distributed," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(1), pages 51-67, June.
  • Handle: RePEc:spr:stmapp:v:16:y:2007:i:1:p:51-67
    DOI: 10.1007/s10260-006-0016-6

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Becker, Gary S & Lewis, H Gregg, 1973. "On the Interaction between the Quantity and Quality of Children," Journal of Political Economy, University of Chicago Press, vol. 81(2), pages 279-288, Part II, .
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Kandala, Ngianga-Bakwin & Magadi, Monica Akinyi & Madise, Nyovani Janet, 2006. "An investigation of district spatial variations of childhood diarrhoea and fever morbidity in Malawi," Social Science & Medicine, Elsevier, vol. 62(5), pages 1138-1152, March.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    5. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    6. Cohen, Barney, 1998. "The emerging fertility transition in sub-Saharan Africa," World Development, Elsevier, vol. 26(8), pages 1431-1461, August.
    7. Christophe Z. Guilmoto & S. Irudaya Rajan, 2001. "Spatial Patterns of Fertility Transition in Indian Districts," Population and Development Review, The Population Council, Inc., vol. 27(4), pages 713-738.
    8. Easterlin, Richard A. & Crimmins, Eileen M., 1985. "The Fertility Revolution," University of Chicago Press Economics Books, University of Chicago Press, edition 0, number 9780226180298, March.
    9. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
    10. Weiren Wang & Felix Famoye, 1997. "Modeling household fertility decisions with generalized Poisson regression," Journal of Population Economics, Springer;European Society for Population Economics, vol. 10(3), pages 273-283.
    11. Wenyang Zhang & Fiona Steele, 2004. "A semiparametric multilevel survival model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(2), pages 387-404.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:16:y:2007:i:1:p:51-67. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.