IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Topological aggregation, the case of an infinite population

Listed author(s):
  • Luc Lauwers

    (Monitoraat ETEW, KU Leuven, Dekenstraat 2, B-3000 Leuven, Belgium)

The literature on infinite Chichilnisky rules considers two forms of anonymity: a weak and a strong. This note introduces a third form: bounded anonymity. It allows us to prove an infinite analogue of the "Chichilnisky- Heal-resolution" close to the original theorem: a compact parafinite CW-complex X admits a bounded anonymous infinite rule if and only if X is contractible. Furthermore, bounded anonymity is shown to be compatible with the finite and the [0, 1]-continuum version of anonymity and allows the construction of convex means in infinite populations. With X=[0, 1], the set of linear bounded anonymous rules coincides with the set of medial limits.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to the full text of the articles in this series is restricted

File URL:
Download Restriction: Access to the full text of the articles in this series is restricted

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer & The Society for Social Choice and Welfare in its journal Social Choice and Welfare.

Volume (Year): 14 (1997)
Issue (Month): 2 ()
Pages: 319-332

in new window

Handle: RePEc:spr:sochwe:v:14:y:1997:i:2:p:319-332
Note: Received: 30 October 1993/Accepted: 22 April 1996
Contact details of provider: Web page:

Web page:

More information through EDIRC

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:14:y:1997:i:2:p:319-332. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.