IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v94y2013i1d10.1007_s11192-012-0830-6.html
   My bibliography  Save this article

Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis

Author

Listed:
  • Janghyeok Yoon

    (Konkuk University)

  • Hyunseok Park

    (Pohang University of Science and Technology)

  • Kwangsoo Kim

    (Pohang University of Science and Technology)

Abstract

Patent maps showing competition trends in technological development can provide valuable input for decision support on research and development (R&D) strategies. By introducing semantic patent analysis with advantages in representing technological objectives and structures, this paper constructs dynamic patent maps to show technological competition trends and describes the strategic functions of the dynamic maps. The proposed maps are based on subject-action-object (SAO) structures that are syntactically ordered sentences extracted using the natural language processing of the patent text; the structures of a patent encode the key findings of the invention and expertise of its inventors. Therefore, this paper introduces a method of constructing dynamic patent maps using SAO-based content analysis of patents and presents several types of dynamic patent maps by combining patent bibliographic information and patent mapping and clustering techniques. Building on the maps, this paper provides further analyses to identify technological areas in which patents have not been granted (“patent vacuums”), areas in which many patents have actively appeared (“technological hot spots”), R&D overlap of technological competitors, and characteristics of patent clusters. The proposed analyses of dynamic patent maps are illustrated using patents related to the synthesis of carbon nanotubes. We expect that the proposed method will aid experts in understanding technological competition trends in the process of formulating R&D strategies.

Suggested Citation

  • Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
  • Handle: RePEc:spr:scient:v:94:y:2013:i:1:d:10.1007_s11192-012-0830-6
    DOI: 10.1007/s11192-012-0830-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-012-0830-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-012-0830-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janghyeok Yoon & Sungchul Choi & Kwangsoo Kim, 2011. "Invention property-function network analysis of patents: a case of silicon-based thin film solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 687-703, March.
    2. Pao-Long Chang & Chao-Chan Wu & Hoang-Jyh Leu, 2010. "Using patent analyses to monitor the technological trends in an emerging field of technology: a case of carbon nanotube field emission display," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 5-19, January.
    3. Wanner, Leo & Baeza-Yates, Ricardo & Brügmann, Sören & Codina, Joan & Diallo, Barrou & Escorsa, Enric & Giereth, Mark & Kompatsiaris, Yiannis & Papadopoulos, Symeon & Pianta, Emanuele & Piella, Gemma , 2008. "Towards content-oriented patent document processing," World Patent Information, Elsevier, vol. 30(1), pages 21-33, March.
    4. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    5. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    6. Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
    7. Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2012. "Identifying patent infringement using SAO based semantic technological similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 515-529, February.
    8. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
    2. Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
    3. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    4. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
    5. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
    6. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
    7. Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
    8. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    9. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
    10. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    11. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
    12. An, Xin & Li, Jinghong & Xu, Shuo & Chen, Liang & Sun, Wei, 2021. "An improved patent similarity measurement based on entities and semantic relations," Journal of Informetrics, Elsevier, vol. 15(2).
    13. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    14. Farshad Madani, 2015. "‘Technology Mining’ bibliometrics analysis: applying network analysis and cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 323-335, October.
    15. Hyunseok Park & Janghyeok Yoon & Kwangsoo Kim, 2013. "Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 883-909, December.
    16. Woondong Yeo & Seonho Kim & Byoung-Youl Coh & Jaewoo Kang, 2013. "A quantitative approach to recommend promising technologies for SME innovation: a case study on knowledge arbitrage from LCD to solar cell," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(2), pages 589-604, August.
    17. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
    18. Hei Chia Wang & Yung Chang Chi & Ping Lun Hsin, 2018. "Constructing Patent Maps Using Text Mining to Sustainably Detect Potential Technological Opportunities," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    19. Xuefeng Wang & Huichao Ren & Yun Chen & Yuqin Liu & Yali Qiao & Ying Huang, 2019. "Measuring patent similarity with SAO semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 1-23, October.
    20. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:94:y:2013:i:1:d:10.1007_s11192-012-0830-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.