IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v130y2025i4d10.1007_s11192-025-05286-2.html
   My bibliography  Save this article

Enhancing keyphrase extraction from academic articles using section structure information

Author

Listed:
  • Chengzhi Zhang

    (Nanjing University of Science and Technology)

  • Xinyi Yan

    (Nanjing University of Science and Technology)

  • Lei Zhao

    (Nanjing University of Science and Technology)

  • Yingyi Zhang

    (Soochow University)

Abstract

The exponential increase in academic papers has significantly increased the time required for researchers to access relevant literature. Keyphrase extraction (KPE) offers a solution to this situation by enabling researchers to efficiently retrieve relevant literature. The current study on KPE from academic articles aims to improve the performance of extraction models through innovative approaches using Title and Abstract as input corpora. However, the semantic richness of keywords is significantly constrained by the length of the abstract. While full-text-based KPE can address this issue, it simultaneously introduces noise, which significantly diminishes KPE performance. To address this issue, this paper utilized the structural features and section texts obtained from the section structure information of academic articles to extract keyphrase from academic papers. The approach consists of two main parts: (1) exploring the effect of seven structural features on KPE models, and (2) integrating the extraction results from all section texts used as input corpora for KPE models via a keyphrase integration algorithm to obtain the keyphrase integration result. Furthermore, this paper also examined the effect of the classification quality of section structure on the KPE performance. The results show that incorporating structural features improves KPE performance, though different features have varying effects on model efficacy. The keyphrase integration approach yields the best performance, and the classification quality of section structure can affect KPE performance. These findings indicate that using the section structure information of academic articles contributes to effective KPE from academic articles. The code and dataset supporting this study are available at https://github.com/yan-xinyi/SSB_KPE .

Suggested Citation

  • Chengzhi Zhang & Xinyi Yan & Lei Zhao & Yingyi Zhang, 2025. "Enhancing keyphrase extraction from academic articles using section structure information," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(4), pages 2311-2343, April.
  • Handle: RePEc:spr:scient:v:130:y:2025:i:4:d:10.1007_s11192-025-05286-2
    DOI: 10.1007/s11192-025-05286-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-025-05286-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-025-05286-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Ying & Liu, Xiaozhong & Guo, Chun & Cronin, Blaise, 2013. "The distribution of references across texts: Some implications for citation analysis," Journal of Informetrics, Elsevier, vol. 7(3), pages 583-592.
    2. Jin Yao Chin & Sourav S. Bhowmick & Adam Jatowt, 2019. "On‐demand recent personal tweets summarization on mobile devices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(6), pages 547-562, June.
    3. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    4. Chengzhi Zhang & Lei Zhao & Mengyuan Zhao & Yingyi Zhang, 2022. "Enhancing keyphrase extraction from academic articles with their reference information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 703-731, February.
    5. Bowen Ma & Chengzhi Zhang & Yuzhuo Wang & Sanhong Deng, 2022. "Enhancing identification of structure function of academic articles using contextual information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 885-925, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinqing Yang & Zhifeng Liu & Xiufeng Cheng & Guanghui Ye, 2024. "Understanding the keyword adoption behavior patterns of researchers from a functional structure perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3359-3384, June.
    2. Jeon, Jong Hee & Jung, Jason J., 2024. "Article ranking with location-based weight in contextual citation network," Journal of Informetrics, Elsevier, vol. 18(4).
    3. Mohammed Azmi Al-Betar & Ammar Kamal Abasi & Ghazi Al-Naymat & Kamran Arshad & Sharif Naser Makhadmeh, 2023. "Optimization of scientific publications clustering with ensemble approach for topic extraction," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2819-2877, May.
    4. Martin Ricker, 2017. "Letter to the Editor: About the quality and impact of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1851-1855, June.
    5. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    6. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    7. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    8. Ainun Hasanah & Jing Wu, 2025. "Bibliometric analysis and global research trends of climate change and cities studies for 30 years (1990–2021)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 5573-5617, March.
    9. Neal R. Haddaway & Max W. Callaghan & Alexandra M. Collins & William F. Lamb & Jan C. Minx & James Thomas & Denny John, 2020. "On the use of computer‐assistance to facilitate systematic mapping," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(4), December.
    10. Vincent Raoult, 2020. "How Many Papers Should Scientists Be Reviewing? An Analysis Using Verified Peer Review Reports," Publications, MDPI, vol. 8(1), pages 1-9, January.
    11. Eloy López-Meneses & Esteban Vázquez-Cano & Mariana-Daniela González-Zamar & Emilio Abad-Segura, 2020. "Socioeconomic Effects in Cyberbullying: Global Research Trends in the Educational Context," IJERPH, MDPI, vol. 17(12), pages 1-31, June.
    12. Jinseok Kim & Jinmo Kim & Jason Owen-Smith, 2019. "Generating automatically labeled data for author name disambiguation: an iterative clustering method," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 253-280, January.
    13. repec:plo:pone00:0214199 is not listed on IDEAS
    14. Lutz Bornmann & Robin Haunschild & Rüdiger Mutz, 2021. "Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    15. Yu Zhang & Min Wang & Morteza Saberi & Elizabeth Chang, 2022. "Analysing academic paper ranking algorithms using test data and benchmarks: an investigation," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4045-4074, July.
    16. Edré Moreira & Wagner Meira & Marcos André Gonçalves & Alberto H. F. Laender, 2023. "The rise of hyperprolific authors in computer science: characterization and implications," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2945-2974, May.
    17. Ebadi, Ashkan & Auger, Alain & Gauthier, Yvan, 2022. "Detecting emerging technologies and their evolution using deep learning and weak signal analysis," Journal of Informetrics, Elsevier, vol. 16(4).
    18. Lanu Kim & Jason H. Portenoy & Jevin D. West & Katherine W. Stovel, 2020. "Scientific journals still matter in the era of academic search engines and preprint archives," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 71(10), pages 1218-1226, October.
    19. Ana Teresa Santos & Sandro Mendonça, 2022. "Do papers (really) match journals’ “aims and scope”? A computational assessment of innovation studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7449-7470, December.
    20. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    21. Andrea Polonioli, 2020. "In search of better science: on the epistemic costs of systematic reviews and the need for a pluralistic stance to literature search," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1267-1274, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:130:y:2025:i:4:d:10.1007_s11192-025-05286-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.