IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i11d10.1007_s11192-021-04212-6.html
   My bibliography  Save this article

Important citations identification with semi-supervised classification model

Author

Listed:
  • Xin An

    (Beijing Forestry University)

  • Xin Sun

    (Institute of Scientific and Technical Information of China)

  • Shuo Xu

    (Beijing University of Technology)

Abstract

Given that citations are not equally important, various techniques have been presented to identify important citations on the basis of supervised machine learning models. However, only a small volume of instances have been annotated manually with the labels. To make full use of unlabeled instances and promote the identification performance, the semi-supervised self-training technique is utilized here to identify important citations in this work. After six groups of features are engineered, the SVM and RF models are chosen as the base classifiers for self-training strategy. Then two experiments based on two different types of datasets are conducted. The experiment on the expert-labeled dataset from one single discipline shows that the semi-supervised versions of SVM and RF models significantly improve the performance of the conventional supervised versions when unannotated samples under 75% and 95% confidence level are rejoined to the training set, respectively. The AUC-PR and AUC-ROC of SVM model are 0.8102 and 0.9622, and those of RF model reach 0.9248 and 0.9841, which outperform their counterparts and the benchmark methods in the literature. This demonstrates the effectiveness of our semi-supervised self-training strategy for important citation identification. Another experiment on the author-labeled dataset from multiple disciplines, semi-supervised learning models can perform better than their supervised learning counterparts in term of AUC-PR when the ratio of labeled instances is less than 20%. Compared to our first experiment, insufficient amount of instances from each discipline in our second experiment enables the performance of the models to be unsatisfactory.

Suggested Citation

  • Xin An & Xin Sun & Shuo Xu, 2022. "Important citations identification with semi-supervised classification model," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6533-6555, November.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-021-04212-6
    DOI: 10.1007/s11192-021-04212-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04212-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04212-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    2. Saeed-Ul Hassan & Iqra Safder & Anam Akram & Faisal Kamiran, 2018. "A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 973-996, August.
    3. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    4. Themis Lazaridis, 2010. "Ranking university departments using the mean h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 211-216, February.
    5. Xiaodan Zhu & Peter Turney & Daniel Lemire & André Vellino, 2015. "Measuring academic influence: Not all citations are equal," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 408-427, February.
    6. Faiza Qayyum & Muhammad Tanvir Afzal, 2019. "Identification of important citations by exploiting research articles’ metadata and cue-terms from content," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 21-43, January.
    7. Saeed-Ul Hassan & Mubashir Imran & Sehrish Iqbal & Naif Radi Aljohani & Raheel Nawaz, 2018. "Deep context of citations using machine-learning models in scholarly full-text articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1645-1662, December.
    8. Tong Zeng & Daniel E. Acuna, 2020. "Modeling citation worthiness by using attention-based bidirectional long short-term memory networks and interpretable models," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 399-428, July.
    9. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faiza Qayyum & Harun Jamil & Naeem Iqbal & DoHyeun Kim & Muhammad Tanvir Afzal, 2022. "Toward potential hybrid features evaluation using MLP-ANN binary classification model to tackle meaningful citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6471-6499, November.
    2. Yi Zhang & Chengzhi Zhang & Philipp Mayr & Arho Suominen, 2022. "An editorial of “AI + informetrics”: multi-disciplinary interactions in the era of big data," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6503-6507, November.
    3. Percia David, Dimitri & Maréchal, Loïc & Lacube, William & Gillard, Sébastien & Tsesmelis, Michael & Maillart, Thomas & Mermoud, Alain, 2023. "Measuring security development in information technologies: A scientometric framework using arXiv e-prints," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Guo Chen & Jing Chen & Yu Shao & Lu Xiao, 2023. "Automatic noise reduction of domain-specific bibliographic datasets using positive-unlabeled learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1187-1204, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiza Qayyum & Harun Jamil & Naeem Iqbal & DoHyeun Kim & Muhammad Tanvir Afzal, 2022. "Toward potential hybrid features evaluation using MLP-ANN binary classification model to tackle meaningful citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6471-6499, November.
    2. Naif Radi Aljohani & Ayman Fayoumi & Saeed-Ul Hassan, 2021. "An in-text citation classification predictive model for a scholarly search system," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5509-5529, July.
    3. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    4. Mingyang Wang & Jiaqi Zhang & Shijia Jiao & Xiangrong Zhang & Na Zhu & Guangsheng Chen, 2020. "Important citation identification by exploiting the syntactic and contextual information of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2109-2129, December.
    5. Yu, Dejian & Yan, Zhaoping, 2023. "Main path analysis considering citation structure and content: Case studies in different domains," Journal of Informetrics, Elsevier, vol. 17(1).
    6. Setio Basuki & Masatoshi Tsuchiya, 2022. "SDCF: semi-automatically structured dataset of citation functions," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4569-4608, August.
    7. Xiaorui Jiang & Junjun Liu, 2023. "Extracting the evolutionary backbone of scientific domains: The semantic main path network analysis approach based on citation context analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(5), pages 546-569, May.
    8. Iqra Safder & Saeed-Ul Hassan, 2019. "Bibliometric-enhanced information retrieval: a novel deep feature engineering approach for algorithm searching from full-text publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 257-277, April.
    9. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    10. Iman Tahamtan & Lutz Bornmann, 2019. "What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1635-1684, December.
    11. Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.
    12. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    13. Masaru Kuno & Mary Prorok & Shubin Zhang & Huy Huynh & Thurston Miller, 2022. "Deciphering the US News and World Report Ranking of US Chemistry Graduate Programs," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2131-2150, May.
    14. Minchul Lee & Min Song, 2020. "Incorporating citation impact into analysis of research trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1191-1224, August.
    15. Yasher Ali & Osman Khalid & Imran Ali Khan & Syed Sajid Hussain & Faisal Rehman & Sajid Siraj & Raheel Nawaz, 2022. "A hybrid group-based movie recommendation framework with overlapping memberships," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-28, March.
    16. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    17. Dangzhi Zhao & Andreas Strotmann, 2020. "Telescopic and panoramic views of library and information science research 2011–2018: a comparison of four weighting schemes for author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 255-270, July.
    18. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    19. Franceschini, Fiorenzo & Maisano, Domenico, 2011. "Structured evaluation of the scientific output of academic research groups by recent h-based indicators," Journal of Informetrics, Elsevier, vol. 5(1), pages 64-74.
    20. Aniruddha Maiti & Sai Shi & Slobodan Vucetic, 2023. "An ablation study on the use of publication venue quality to rank computer science departments," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4197-4218, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:11:d:10.1007_s11192-021-04212-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.