IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v116y2018i2d10.1007_s11192-018-2737-3.html
   My bibliography  Save this article

Discovering cross-topic collaborations among researchers by exploiting weighted association rules

Author

Listed:
  • Luca Cagliero

    (Politecnico di Torino)

  • Paolo Garza

    (Politecnico di Torino)

  • Mohammad Reza Kavoosifar

    (Politecnico di Torino)

  • Elena Baralis

    (Politecnico di Torino)

Abstract

Identifying the most relevant scientific publications on a given topic is a well-known research problem. The Author-Topic Model (ATM) is a generative model that represents the relationships between research topics and publication authors. It allows us to identify the most influential authors on a particular topic. However, since most research works are co-authored by many researchers the information provided by ATM can be complemented by the study of the most fruitful collaborations among multiple authors. This paper addresses the discovery of research collaborations among multiple authors on single or multiple topics. Specifically, it exploits an exploratory data mining technique, i.e., weighted association rule mining, to analyze publication data and to discover correlations between ATM topics and combinations of authors. The mined rules characterize groups of researchers with fairly high scientific productivity by indicating (1) the research topics covered by their most cited publications and the relevance of their scientific production separately for each topic, (2) the nature of the collaboration (topic-specific or cross-topic), (3) the name of the external authors who have (occasionally) collaborated with the group either on a specific topic or on multiple topics, and (4) the underlying correlations between the addressed topics. The applicability of the proposed approach was validated on real data acquired from the Online Mendelian Inheritance in Man catalog of genetic disorders and from the PubMed digital library. The results confirm the effectiveness of the proposed strategy.

Suggested Citation

  • Luca Cagliero & Paolo Garza & Mohammad Reza Kavoosifar & Elena Baralis, 2018. "Discovering cross-topic collaborations among researchers by exploiting weighted association rules," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1273-1301, August.
  • Handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2737-3
    DOI: 10.1007/s11192-018-2737-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2737-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2737-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. E. Hirsch, 2010. "An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 741-754, December.
    2. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    3. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    4. Guo Zhang & Ying Ding & Staša Milojević, 2013. "Citation content analysis (CCA): A framework for syntactic and semantic analysis of citation content," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1490-1503, July.
    5. Waltman, Ludo & van Eck, Nees Jan, 2015. "Field-normalized citation impact indicators and the choice of an appropriate counting method," Journal of Informetrics, Elsevier, vol. 9(4), pages 872-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Cabanac & Ingo Frommholz & Philipp Mayr, 2018. "Bibliometric-enhanced information retrieval: preface," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1225-1227, August.
    2. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    2. Chao Lu & Ying Ding & Chengzhi Zhang, 2017. "Understanding the impact change of a highly cited article: a content-based citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 927-945, August.
    3. Zhang, Chengzhi & Liu, Lifan & Wang, Yuzhuo, 2021. "Characterizing references from different disciplines: A perspective of citation content analysis," Journal of Informetrics, Elsevier, vol. 15(2).
    4. Xiaorui Jiang & Jingqiang Chen, 2023. "Contextualised segment-wise citation function classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5117-5158, September.
    5. Hamid R. Jamali & Majid Nabavi & Saeid Asadi, 2018. "How video articles are cited, the case of JoVE: Journal of Visualized Experiments," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1821-1839, December.
    6. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    7. Jiang, Xiaorui & Zhuge, Hai, 2019. "Forward search path count as an alternative indirect citation impact indicator," Journal of Informetrics, Elsevier, vol. 13(4).
    8. Kai Nishikawa, 2023. "How and why are citations between disciplines made? A citation context analysis focusing on natural sciences and social sciences and humanities," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2975-2997, May.
    9. Lina Zhou & Uchechukwuka Amadi & Dongsong Zhang, 2020. "Is Self-Citation Biased? An Investigation via the Lens of Citation Polarity, Density, and Location," Information Systems Frontiers, Springer, vol. 22(1), pages 77-90, February.
    10. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    11. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    12. Sehrish Iqbal & Saeed-Ul Hassan & Naif Radi Aljohani & Salem Alelyani & Raheel Nawaz & Lutz Bornmann, 2021. "A decade of in-text citation analysis based on natural language processing and machine learning techniques: an overview of empirical studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6551-6599, August.
    13. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    14. Lutz Bornmann & Robin Haunschild & Sven E. Hug, 2018. "Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 427-437, February.
    15. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    16. Liu, Xiaojuan & Wang, Chenlin & Chen, Dar-Zen & Huang, Mu-Hsuan, 2022. "Exploring perception of retraction based on mentioned status in post-retraction citations," Journal of Informetrics, Elsevier, vol. 16(3).
    17. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    18. Li, Kai & Chen, Pei-Ying & Yan, Erjia, 2019. "Challenges of measuring software impact through citations: An examination of the lme4 R package," Journal of Informetrics, Elsevier, vol. 13(1), pages 449-461.
    19. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    20. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:116:y:2018:i:2:d:10.1007_s11192-018-2737-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.