IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v113y2017i1d10.1007_s11192-017-2375-1.html
   My bibliography  Save this article

Evaluating alternative systems of peer review: a large-scale agent-based modelling approach to scientific publication

Author

Listed:
  • Michail Kovanis

    (INSERM U1153
    Université Paris Descartes – Sorbonne Paris cité)

  • Ludovic Trinquart

    (INSERM U1153
    Cochrane France)

  • Philippe Ravaud

    (INSERM U1153
    Université Paris Descartes – Sorbonne Paris cité
    Centre d’Epidémiologie Clinique
    Cochrane France)

  • Raphaël Porcher

    (INSERM U1153
    Université Paris Descartes – Sorbonne Paris cité
    Centre d’Epidémiologie Clinique)

Abstract

The debate on whether the peer-review system is in crisis has been heated recently. A variety of alternative systems have been proposed to improve the system and make it sustainable. However, we lack sufficient evidence and data related to these issues. Here we used a previously developed agent-based model of the scientific publication and peer-review system calibrated with empirical data to compare the efficiency of five alternative peer-review systems with the conventional system. We modelled two systems of immediate publication, with and without online reviews (crowdsourcing), a system with only one round of reviews and revisions allowed (re-review opt-out) and two review-sharing systems in which rejected manuscripts are resubmitted along with their past reviews to any other journal (portable) or to only those of the same publisher but of lower impact factor (cascade). The review-sharing systems outperformed or matched the performance of the conventional one in all peer-review efficiency, reviewer effort and scientific dissemination metrics we used. The systems especially showed a large decrease in total time of the peer-review process and total time devoted by reviewers to complete all reports in a year. The two systems with immediate publication released more scientific information than the conventional one but provided almost no other benefit. Re-review opt-out decreased the time reviewers devoted to peer review but had lower performance on screening papers that should not be published and relative increase in intrinsic quality of papers due to peer review than the conventional system. Sensitivity analyses showed consistent findings to those from our main simulations. We recommend prioritizing a system of review-sharing to create a sustainable scientific publication and peer-review system.

Suggested Citation

  • Michail Kovanis & Ludovic Trinquart & Philippe Ravaud & Raphaël Porcher, 2017. "Evaluating alternative systems of peer review: a large-scale agent-based modelling approach to scientific publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 651-671, October.
  • Handle: RePEc:spr:scient:v:113:y:2017:i:1:d:10.1007_s11192-017-2375-1
    DOI: 10.1007/s11192-017-2375-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-017-2375-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-017-2375-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario Paolucci & Francisco Grimaldo, 2014. "Mechanism change in a simulation of peer review: from junk support to elitism," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 663-688, June.
    2. Richard Van Noorden, 2013. "Company offers portable peer review," Nature, Nature, vol. 494(7436), pages 161-161, February.
    3. Adrian Mulligan & Louise Hall & Ellen Raphael, 2013. "Peer review in a changing world: An international study measuring the attitudes of researchers," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(1), pages 132-161, January.
    4. Simone Righi & Károly Takács, 2017. "The miracle of peer review and development in science: an agent-based model," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 587-607, October.
    5. Adrian Mulligan & Louise Hall & Ellen Raphael, 2013. "Peer review in a changing world: An international study measuring the attitudes of researchers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(1), pages 132-161, January.
    6. In-Uck Park & Mike W. Peacey & Marcus R. Munafò, 2014. "Modelling the effects of subjective and objective decision making in scientific peer review," Nature, Nature, vol. 506(7486), pages 93-96, February.
    7. Flaminio Squazzoni & Claudio Gandelli, 2013. "Opening the Black-Box of Peer Review: An Agent-Based Model of Scientist Behaviour," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(2), pages 1-3.
    8. Michail Kovanis & Raphaël Porcher & Philippe Ravaud & Ludovic Trinquart, 2016. "Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 695-715, February.
    9. Martijn Arns, 2014. "Open access is tiring out peer reviewers," Nature, Nature, vol. 515(7528), pages 467-467, November.
    10. S. Thurner & R. Hanel, 2011. "Peer-review in a world with rational scientists: Toward selection of the average," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 707-711, December.
    11. Trisha Gura, 2002. "Peer review, unmasked," Nature, Nature, vol. 416(6878), pages 258-260, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Bianchi & Francisco Grimaldo & Giangiacomo Bravo & Flaminio Squazzoni, 2018. "The peer review game: an agent-based model of scientists facing resource constraints and institutional pressures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1401-1420, September.
    2. Elise S. Brezis & Aliaksandr Birukou, 2020. "Arbitrariness in the peer review process," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 393-411, April.
    3. Thomas Feliciani & Junwen Luo & Lai Ma & Pablo Lucas & Flaminio Squazzoni & Ana Marušić & Kalpana Shankar, 2019. "A scoping review of simulation models of peer review," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 555-594, October.
    4. Giuseppe Pernagallo, 2023. "Science in the mist: A model of asymmetric information for the research market," Metroeconomica, Wiley Blackwell, vol. 74(2), pages 390-415, May.
    5. Francisco Grimaldo & Mario Paolucci & Jordi Sabater-Mir, 2018. "Reputation or peer review? The role of outliers," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1421-1438, September.
    6. Balázs Győrffy & Andrea Magda Nagy & Péter Herman & Ádám Török, 2018. "Factors influencing the scientific performance of Momentum grant holders: an evaluation of the first 117 research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 409-426, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michail Kovanis & Raphaël Porcher & Philippe Ravaud & Ludovic Trinquart, 2016. "Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 695-715, February.
    2. J. A. Garcia & Rosa Rodriguez-Sánchez & J. Fdez-Valdivia, 2021. "The interplay between the reviewer’s incentives and the journal’s quality standard," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3041-3061, April.
    3. Thomas Feliciani & Junwen Luo & Lai Ma & Pablo Lucas & Flaminio Squazzoni & Ana Marušić & Kalpana Shankar, 2019. "A scoping review of simulation models of peer review," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 555-594, October.
    4. Michail Kovanis & Raphaël Porcher & Philippe Ravaud & Ludovic Trinquart, 2016. "The Global Burden of Journal Peer Review in the Biomedical Literature: Strong Imbalance in the Collective Enterprise," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    5. Francisco Grimaldo & Mario Paolucci & Jordi Sabater-Mir, 2018. "Reputation or peer review? The role of outliers," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1421-1438, September.
    6. Federico Bianchi & Francisco Grimaldo & Giangiacomo Bravo & Flaminio Squazzoni, 2018. "The peer review game: an agent-based model of scientists facing resource constraints and institutional pressures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1401-1420, September.
    7. J. A. Garcia & Rosa Rodriguez-Sánchez & J. Fdez-Valdivia, 2020. "The author–reviewer game," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2409-2431, September.
    8. Pawel Sobkowicz, 2015. "Innovation Suppression and Clique Evolution in Peer-Review-Based, Competitive Research Funding Systems: An Agent-Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-13.
    9. Rodríguez Sánchez, Isabel & Makkonen, Teemu & Williams, Allan M., 2019. "Peer review assessment of originality in tourism journals: critical perspective of key gatekeepers," Annals of Tourism Research, Elsevier, vol. 77(C), pages 1-11.
    10. Zhang, Guangyao & Xu, Shenmeng & Sun, Yao & Jiang, Chunlin & Wang, Xianwen, 2022. "Understanding the peer review endeavor in scientific publishing," Journal of Informetrics, Elsevier, vol. 16(2).
    11. Maciej J. Mrowinski & Agata Fronczak & Piotr Fronczak & Olgica Nedic & Marcel Ausloos, 2016. "Review time in peer review: quantitative analysis and modelling of editorial workflows," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 271-286, April.
    12. Feliciani, Thomas & Morreau, Michael & Luo, Junwen & Lucas, Pablo & Shankar, Kalpana, 2022. "Designing grant-review panels for better funding decisions: Lessons from an empirically calibrated simulation model," Research Policy, Elsevier, vol. 51(4).
    13. Bianchi, Federico & Grimaldo, Francisco & Squazzoni, Flaminio, 2019. "The F3-index. Valuing reviewers for scholarly journals," Journal of Informetrics, Elsevier, vol. 13(1), pages 78-86.
    14. Yuetong Chen & Hao Wang & Baolong Zhang & Wei Zhang, 2022. "A method of measuring the article discriminative capacity and its distribution," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3317-3341, June.
    15. Qianjin Zong & Yafen Xie & Jiechun Liang, 2020. "Does open peer review improve citation count? Evidence from a propensity score matching analysis of PeerJ," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 607-623, October.
    16. Maciej J Mrowinski & Piotr Fronczak & Agata Fronczak & Marcel Ausloos & Olgica Nedic, 2017. "Artificial intelligence in peer review: How can evolutionary computation support journal editors?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-11, September.
    17. Narjes Vara & Mahdieh Mirzabeigi & Hajar Sotudeh & Seyed Mostafa Fakhrahmad, 2022. "Application of k-means clustering algorithm to improve effectiveness of the results recommended by journal recommender system," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3237-3252, June.
    18. Katarina Krapež, 2022. "Advancing Self-Evaluative and Self-Regulatory Mechanisms of Scholarly Journals: Editors’ Perspectives on What Needs to Be Improved in the Editorial Process," Publications, MDPI, vol. 10(1), pages 1-18, March.
    19. Bravo, Giangiacomo & Farjam, Mike & Grimaldo Moreno, Francisco & Birukou, Aliaksandr & Squazzoni, Flaminio, 2018. "Hidden connections: Network effects on editorial decisions in four computer science journals," Journal of Informetrics, Elsevier, vol. 12(1), pages 101-112.
    20. Abbie Griffin & Gloria Barczak, 2020. "Effective reviewing for conceptual journal submissions," AMS Review, Springer;Academy of Marketing Science, vol. 10(1), pages 36-48, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:113:y:2017:i:1:d:10.1007_s11192-017-2375-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.