IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v102y2015i1d10.1007_s11192-014-1398-0.html
   My bibliography  Save this article

Improving the normalization effect of mean-based method from the perspective of optimization: optimization-based linear methods and their performance

Author

Listed:
  • Zhihui Zhang

    (Shanghai Jiao Tong University)

  • Ying Cheng

    (Shanghai Jiao Tong University)

  • Nian Cai Liu

    (Shanghai Jiao Tong University)

Abstract

Mean-based method may be the most popular linear method for field normalization of citation impact. However, the relatively good but not ideal performance of mean-based method, plus its being a special case of the general scaling method y = kx and the more general affine method y = kx + b, implies that more effective linear methods may exist. Under the idea of making the citation distribution of each field approximate a common reference distribution through the transformation of scaling method and affine method with unknown parameters k and b, we derived the scaling and affine methods under separate unweighted and weighted optimization models for 236 Web of Science subject categories. While the unweighted-optimization-based scaling and affine methods did not show full advantages over mean-based method, the weighted-optimization-based affine method showed a decided advantage over mean-based method along most parts of the distributions. At the same time, the trivial advantage of weighted-optimization-based scaling method over mean-based method indirectly validated the good normalization performance of mean-based method. Based on these results, we conclude that mean-based method is acceptable for general field normalization, but in the face of higher demands on normalization effect, the weighted-optimization-based affine method may be a better choice.

Suggested Citation

  • Zhihui Zhang & Ying Cheng & Nian Cai Liu, 2015. "Improving the normalization effect of mean-based method from the perspective of optimization: optimization-based linear methods and their performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 587-607, January.
  • Handle: RePEc:spr:scient:v:102:y:2015:i:1:d:10.1007_s11192-014-1398-0
    DOI: 10.1007/s11192-014-1398-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1398-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1398-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Moed, H. F. & Burger, W. J. M. & Frankfort, J. G. & Van Raan, A. F. J., 1985. "The use of bibliometric data for the measurement of university research performance," Research Policy, Elsevier, vol. 14(3), pages 131-149, June.
    3. Pedro Albarrán & Javier Ruiz‐Castillo, 2011. "References made and citations received by scientific articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 40-49, January.
    4. Anthony F.J. van Raan, 2006. "Statistical properties of bibliometric indicators: Research group indicator distributions and correlations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 408-430, February.
    5. J Sylvan Katz, 2000. "Scale-independent indicators and research evaluation," Science and Public Policy, Oxford University Press, vol. 27(1), pages 23-36, February.
    6. Martin, Ben R. & Irvine, John, 1993. "Assessing basic research : Some partial indicators of scientific progress in radio astronomy," Research Policy, Elsevier, vol. 22(2), pages 106-106, April.
    7. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    8. Waltman, Ludo & van Eck, Nees Jan, 2013. "A systematic empirical comparison of different approaches for normalizing citation impact indicators," Journal of Informetrics, Elsevier, vol. 7(4), pages 833-849.
    9. Lutz Bornmann, 2013. "How to analyze percentile citation impact data meaningfully in bibliometrics: The statistical analysis of distributions, percentile rank classes, and top-cited papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 587-595, March.
    10. Vieira, E.S. & Gomes, J.A.N.F., 2010. "Citations to scientific articles: Its distribution and dependence on the article features," Journal of Informetrics, Elsevier, vol. 4(1), pages 1-13.
    11. Li, Yunrong & Radicchi, Filippo & Castellano, Claudio & Ruiz-Castillo, Javier, 2013. "Quantitative evaluation of alternative field normalization procedures," Journal of Informetrics, Elsevier, vol. 7(3), pages 746-755.
    12. Per O. Seglen, 1992. "The skewness of science," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 43(9), pages 628-638, October.
    13. Ludo Waltman & Nees Jan Eck, 2013. "Source normalized indicators of citation impact: an overview of different approaches and an empirical comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 699-716, September.
    14. Zhihui Zhang & Ying Cheng & Nian Cai Liu, 2014. "Comparison of the effect of mean-based method and z-score for field normalization of citations at the level of Web of Science subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1679-1693, December.
    15. Perc, Matjaž, 2010. "Zipf’s law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia’s research as an example," Journal of Informetrics, Elsevier, vol. 4(3), pages 358-364.
    16. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2012. "Revisiting the scaling of citations for research assessment," Journal of Informetrics, Elsevier, vol. 6(4), pages 470-479.
    17. Filippo Radicchi & Claudio Castellano, 2012. "A Reverse Engineering Approach to the Suppression of Citation Biases Reveals Universal Properties of Citation Distributions," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    18. Lundberg, Jonas, 2007. "Lifting the crown—citation z-score," Journal of Informetrics, Elsevier, vol. 1(2), pages 145-154.
    19. Gregory John Lee, 2010. "Assessing publication performance of research units: extensions through operational research and economic techniques," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 717-734, September.
    20. Ludo Waltman & Nees Jan van Eck & Anthony F. J. van Raan, 2012. "Universality of citation distributions revisited," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 72-77, January.
    21. Michael C. Calver & J. Stuart Bradley, 2009. "Should we use the mean citations per paper to summarise a journal’s impact or to rank journals in the same field?," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 611-615, December.
    22. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2011. "A field-standardized application of DEA to national-scale research assessment of universities," Journal of Informetrics, Elsevier, vol. 5(4), pages 618-628.
    23. Ludo Waltman & Nees Jan van Eck & Anthony F. J. van Raan, 2012. "Universality of citation distributions revisited," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 72-77, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Ruiz-Castillo, Javier & Costas, Rodrigo, 2018. "Individual and field citation distributions in 29 broad scientific fields," Journal of Informetrics, Elsevier, vol. 12(3), pages 868-892.
    3. Zhihui Zhang & Ying Cheng & Nian Cai Liu, 2014. "Comparison of the effect of mean-based method and z-score for field normalization of citations at the level of Web of Science subject categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1679-1693, December.
    4. Bouyssou, Denis & Marchant, Thierry, 2016. "Ranking authors using fractional counting of citations: An axiomatic approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 183-199.
    5. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    6. Ruiz-Castillo, Javier & Costas, Rodrigo, 2014. "The skewness of scientific productivity," Journal of Informetrics, Elsevier, vol. 8(4), pages 917-934.
    7. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2012. "How important is choice of the scaling factor in standardizing citations?," Journal of Informetrics, Elsevier, vol. 6(4), pages 645-654.
    8. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    9. Javier Ruiz-Castillo, 2013. "The role of statistics in establishing the similarity of citation distributions in a static and a dynamic context," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 173-181, July.
    10. Giancarlo Ruocco & Cinzia Daraio, 2013. "An empirical approach to compare the performance of heterogeneous academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(3), pages 601-625, December.
    11. Li, Yunrong & Ruiz-Castillo, Javier, 2013. "The comparison of normalization procedures based on different classification systems," Journal of Informetrics, Elsevier, vol. 7(4), pages 945-958.
    12. Albarrán, Pedro & Ortuño, Ignacio & Ruiz-Castillo, Javier, 2011. "The measurement of low- and high-impact in citation distributions: Technical results," Journal of Informetrics, Elsevier, vol. 5(1), pages 48-63.
    13. Li, Yunrong & Radicchi, Filippo & Castellano, Claudio & Ruiz-Castillo, Javier, 2013. "Quantitative evaluation of alternative field normalization procedures," Journal of Informetrics, Elsevier, vol. 7(3), pages 746-755.
    14. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    15. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    16. Antonio Perianes-Rodriguez & Javier Ruiz-Castillo, 2016. "University citation distributions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(11), pages 2790-2804, November.
    17. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    18. Lutz Bornmann & Klaus Wohlrabe, 2019. "Normalisation of citation impact in economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 841-884, August.
    19. T. S. Evans & N. Hopkins & B. S. Kaube, 2012. "Universality of performance indicators based on citation and reference counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 473-495, November.
    20. Antonio Perianes-Rodriguez & Javier Ruiz-Castillo, 2015. "Within- and between-department variability in individual productivity: the case of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1497-1520, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:102:y:2015:i:1:d:10.1007_s11192-014-1398-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.