IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An alternative direct proof of Gibbard’s random dictatorship theorem

Listed author(s):
  • Yasuhito Tanaka


We present an alternative proof of the Gibbard’s random dictatorship theorem with ex post Pareto optimality. Gibbard(1977) showed that when the number of alternatives is finite and larger than two, and individual preferences are linear (strict), a strategy-proof decision scheme (a probabilistic analogue of a social choice function or a voting rule) is a convex combination of decision schemes which are, in his terms, either unilateral or duple. As a corollary of this theorem (credited to H. Sonnenschein) he showed that a decision scheme which is strategy-proof and satisfies ex post Pareto optimality is randomly dictatorial. We call this corollary the Gibbard’s random dictatorship theorem. We present a proof of this theorem which is direct and follows closely the original Gibbard’s approach. Focusing attention to the case with ex post Pareto optimality our proof is more simple and intuitive than the original Gibbard’s proof. Copyright Springer-Verlag Berlin/Heidelberg 2003

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer & Society for Economic Design in its journal Review Economic Design.

Volume (Year): 8 (2003)
Issue (Month): 3 (October)
Pages: 319-328

in new window

Handle: RePEc:spr:reecde:v:8:y:2003:i:3:p:319-328
DOI: 10.1007/s10058-003-0102-2
Contact details of provider: Web page:

Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:reecde:v:8:y:2003:i:3:p:319-328. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Rebekah McClure)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.