IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v96y2019i1d10.1007_s11069-018-3548-9.html
   My bibliography  Save this article

Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake

Author

Listed:
  • Siyuan Ma

    (China Earthquake Administration)

  • Chong Xu

    (China Earthquake Administration)

Abstract

The April 20, 2013 Mw6.6 earthquake of Lushan County, Sichuan Province, China, has triggered 4540 landslides (> 1000 m2). Exploring a more effective method to assess landslide hazard in the affected area of this event is of great significance for disaster prevention and mitigation. By applying the Newmark model and two statistical analysis models (logic regression and support vector machine, LR and SVM), this study addressed this issue. In the Newmark model, we used the landslide point density, the average gradient (mean slope) and the mean peak ground acceleration to group the lithology and created a critical acceleration (ac) map. The Newmark displacements and the probability of the slope instability are mapped by combining the ac map and PGA map. In the statistical analysis models of LR and SVM, 7040 samples (4540 landslide sites and 2500 random non-landslide sites) were randomly divided into the training set (5000 samples) and validation set (2040 samples). Based on the relationship between landslide distribution and influence factors, we selected the critical acceleration (ac) value, topographic relief, PGA, and distance to rivers as the independent variables for LR and SVM. Finally, the ROC curves for three landslide hazard models were drawn and the AUC values were calculated. The landslide hazard maps produced by LR are similar to those by applying SVM. The AUC values indicate that these two models combined with ac data perform better than the simplified Newmark model. In this study, a new method of integrating statistical analysis models (LR and SVM) with critical acceleration (ac) for earthquake landslide hazard assessment is presented, which can be used to carry out seismic landslide hazard assessment more effectively than the simplified Newmark model.

Suggested Citation

  • Siyuan Ma & Chong Xu, 2019. "Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 389-412, March.
  • Handle: RePEc:spr:nathaz:v:96:y:2019:i:1:d:10.1007_s11069-018-3548-9
    DOI: 10.1007/s11069-018-3548-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3548-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3548-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taskin Kavzoglu & Emrehan Kutlug Sahin & Ismail Colkesen, 2015. "An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 471-496, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyi Shao & Siyuan Ma & Chong Xu & Lingling Shen & Yongkun Lu, 2020. "Inventory, Distribution and Geometric Characteristics of Landslides in Baoshan City, Yunnan Province, China," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    2. Muhammad Basharat & Muhammad Tayyib Riaz & M. Qasim Jan & Chong Xu & Saima Riaz, 2021. "A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    3. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    4. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    5. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    6. Wamba Danny Love Djukem & Anika Braun & Armand Sylvain Ludovic Wouatong & Christian Guedjeo & Katrin Dohmen & Pierre Wotchoko & Tomas Manuel Fernandez-Steeger & Hans-Balder Havenith, 2020. "Effect of Soil Geomechanical Properties and Geo-Environmental Factors on Landslide Predisposition at Mount Oku, Cameroon," IJERPH, MDPI, vol. 17(18), pages 1-27, September.
    7. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    8. Rahim Tavakolifar & Himan Shahabi & Mohsen Alizadeh & Sayed M. Bateni & Mazlan Hashim & Ataollah Shirzadi & Effi Helmy Ariffin & Isabelle D. Wolf & Saman Shojae Chaeikar, 2023. "Spatial Prediction of Landslides Using Hybrid Multi-Criteria Decision-Making Methods: A Case Study of the Saqqez-Marivan Mountain Road in Iran," Land, MDPI, vol. 12(6), pages 1-19, May.
    9. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    10. Francisco Parra & Jaime González & Max Chacón & Mauricio Marín, 2023. "Modeling and Evaluation of the Susceptibility to Landslide Events Using Machine Learning Algorithms in the Province of Chañaral, Atacama Region, Chile," Sustainability, MDPI, vol. 15(24), pages 1-31, December.
    11. L. Lombardo & G. Fubelli & G. Amato & M. Bonasera, 2016. "Presence-only approach to assess landslide triggering-thickness susceptibility: a test for the Mili catchment (north-eastern Sicily, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 565-588, October.
    12. Xudong Hu & Hongbo Mei & Han Zhang & Yuanyuan Li & Mengdi Li, 2021. "Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1663-1689, January.
    13. Sk Ajim Ali & Farhana Parvin & Quoc Bao Pham & Khaled Mohamed Khedher & Mahro Dehbozorgi & Yasin Wahid Rabby & Duong Tran Anh & Duc Hiep Nguyen, 2022. "An ensemble random forest tree with SVM, ANN, NBT, and LMT for landslide susceptibility mapping in the Rangit River watershed, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1601-1633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:96:y:2019:i:1:d:10.1007_s11069-018-3548-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.