IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i3d10.1007_s11069-018-3457-y.html
   My bibliography  Save this article

Calculating snow-avalanche return period from tree-ring data

Author

Listed:
  • Flaviu Meseșan

    (Babeş-Bolyai University)

  • Ionela G. Gavrilă

    (Babeş-Bolyai University)

  • Olimpiu T. Pop

    (Babeş-Bolyai University)

Abstract

The return period is a key element used for snow-avalanche characterization. To calculate the return period, historical data regarding past snow-avalanche activity are required. In mountain areas where past snow avalanches are poorly documented, dendrogeomorphic approaches constitute a reliable method for the reconstruction of past snow avalanches at the temporal scale of living trees. This paper presents an automated method for calculating the snow-avalanche return period using a digital elevation model and the location of the trees disturbed by every reconstructed snow-avalanche occurrence. Unlike the existing method, the method we propose requires neither the calculation of return period for every sampled tree nor the use of interpolation. This new method is based on the determination of spatial extent for every past snow-avalanche occurrence using the upslope area algorithm. The number of past snow-avalanche occurrences is calculated for every pixel of the path. The chronology length is divided by the number of past snow-avalanche occurrences to obtain the return period. In the present paper, both the proposed method and the existing method are applied to calculate the return period for three confined snow-avalanche paths located in Parâng Mountains, part of the Romanian Carpathians. Results are compared and discussed.

Suggested Citation

  • Flaviu Meseșan & Ionela G. Gavrilă & Olimpiu T. Pop, 2018. "Calculating snow-avalanche return period from tree-ring data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1081-1098, December.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3457-y
    DOI: 10.1007/s11069-018-3457-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3457-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3457-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Laternser & Martin Schneebeli, 2002. "Temporal Trend and Spatial Distribution of Avalanche Activity during the Last 50 Years in Switzerland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 27(3), pages 201-230, November.
    2. Daniel Germain & Louise Filion & Bernard Hétu, 2009. "Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada," Climatic Change, Springer, vol. 92(1), pages 141-167, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Germain, 2016. "Snow avalanche hazard assessment and risk management in northern Quebec, eastern Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1303-1321, January.
    2. F. Gauthier & D. Germain & B. Hétu, 2017. "Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 201-232, October.
    3. Peter Höller, 2007. "Avalanche hazards and mitigation in Austria: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(1), pages 81-101, October.
    4. Leighton M. Watson & Brad Carpenter & Kevin Thompson & Jeffrey B. Johnson, 2022. "Using local infrasound arrays to detect plunging snow avalanches along the Milford Road, New Zealand (Aotearoa)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 949-972, March.
    5. Ionela Georgiana Gavrilă & Dariia Kholiavchuk & Iulian Horea Holobâcă & Oles Ridush & Csaba Horváth & Bogdan Ridush & Flaviu Meseşan & Olimpiu Traian Pop, 2022. "Tree-ring records of snow-avalanche activity in the Rodna Mountains (Eastern Carpathians, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2041-2057, November.
    6. Daniel Germain, 2016. "Snow avalanche hazard assessment and risk management in northern Quebec, eastern Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1303-1321, January.
    7. Daniel Germain & Louise Filion & Bernard Hétu, 2009. "Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada," Climatic Change, Springer, vol. 92(1), pages 141-167, January.
    8. Conny Hammer & Donat Fäh & Matthias Ohrnberger, 2017. "Automatic detection of wet-snow avalanche seismic signals," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 601-618, March.
    9. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    10. Sven Fuchs & Magdalena Thöni & Maria McAlpin & Urs Gruber & Michael Bründl, 2007. "Avalanche Hazard Mitigation Strategies Assessed by Cost Effectiveness Analyses and Cost Benefit Analyses—evidence from Davos, Switzerland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 113-129, April.
    11. Peter Höller, 2009. "Avalanche cycles in Austria: an analysis of the major events in the last 50 years," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 399-424, March.
    12. Bilal Saif & Mohammad Tahir & Amir Sultan & Muhammad Tahir Iqbal & Talat Iqbal & Muhammad Ali Shah & Samia Gurmani, 2022. "Triggering mechanisms of Gayari avalanche, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2361-2383, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3457-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.