IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v85y2017i1d10.1007_s11069-016-2570-z.html
   My bibliography  Save this article

Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India

Author

Listed:
  • Reshma Raskar Phule

    (Indian Institute of Technology Bombay)

  • Deepankar Choudhury

    (Indian Institute of Technology Bombay)

Abstract

Cyclic mobility is a mechanism of ground failure due to lateral spreading of soils during an earthquake that usually occurs in soft or medium stiff saturated soils. The simplified procedures developed by the researchers give a factor of safety for judging the cyclic mobility potential. However, the simplified procedures do not take into account the uncertainty in the parameters required to estimate the cyclic stresses in the soil. In this study, a reliability framework based on the simplified procedure, considering the parameter uncertainty, has been proposed for computing the probability of cyclic mobility of clay deposits for a metro city of India, i.e., Mumbai city (latitudes 18°53′N–19°19′N and longitudes 72°47′E–72°58′E). Extensive geotechnical borehole data from 1028 boreholes across 50 locations in the city area of 390 km2 and laboratory test data are collected and analyzed thoroughly. A correlation between undrained shear strength (Su) and other parameters such as natural water content (w), SPT N value, liquid limit (LL) and plasticity index (PI) has been established for Mumbai city and has been used in the proposed approach. The sensitivity analysis of the proposed approach predicts that Su has significant influence in the evaluation of the cyclic mobility. Cyclic mobility hazard maps are prepared using the geo-statistical analysis tool in GIS, and it shows that the clayey soils at few locations have a 60–90 % probability of cyclic mobility for a moment magnitude (M w) of an earthquake of 7.5. These hazard maps can be used by the geotechnical engineers for the cyclic mobility hazard assessment of Mumbai city.

Suggested Citation

  • Reshma Raskar Phule & Deepankar Choudhury, 2017. "Seismic reliability-based analysis and GIS mapping of cyclic mobility of clayey soils of Mumbai city, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 139-169, January.
  • Handle: RePEc:spr:nathaz:v:85:y:2017:i:1:d:10.1007_s11069-016-2570-z
    DOI: 10.1007/s11069-016-2570-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2570-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2570-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jagabandhu Dixit & D. Dewaikar & R. Jangid, 2012. "Soil liquefaction studies at Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 375-390, September.
    2. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    3. Sumedh Mhaske & Deepankar Choudhury, 2011. "Geospatial contour mapping of shear wave velocity for Mumbai city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 317-327, October.
    4. K. Vipin & T. Sitharam & P. Anbazhagan, 2010. "Probabilistic evaluation of seismic soil liquefaction potential based on SPT data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 547-560, June.
    5. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    6. Ganapathy Ganapathy & Ajay Rajawat, 2012. "Evaluation of liquefaction potential hazard of Chennai city, India: using geological and geomorphological characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1717-1729, November.
    7. K. Vipin & T. Sitharam & S. Kolathayar, 2013. "Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1179-1195, January.
    8. Miguel Jaimes & Mauro Niño & Eduardo Reinoso, 2015. "Regional map of earthquake-induced liquefaction hazard using the lateral spreading displacement index D LL," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1595-1618, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    2. Md. Zillur Rahman & A. S. M. Maksud Kamal & Sumi Siddiqua, 2018. "Near-surface shear wave velocity estimation and V s 30 mapping for Dhaka City, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1687-1715, July.
    3. Saikat Kuili & Ravi S. Jakka, 2023. "Reliable assessment of seismic site class using stochastic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2419-2458, September.
    4. Abhishek Kumar & Olympa Baro & N. H. Harinarayan, 2016. "Obtaining the surface PGA from site response analyses based on globally recorded ground motions and matching with the codal values," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 543-572, March.
    5. Sarika Desai & Deepankar Choudhury, 2014. "Spatial variation of probabilistic seismic hazard for Mumbai and surrounding region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1873-1898, April.
    6. Miguel Jaimes & Mauro Niño & Eduardo Reinoso, 2015. "Regional map of earthquake-induced liquefaction hazard using the lateral spreading displacement index D LL," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1595-1618, July.
    7. G. Surve & Jyotima Kanaujia & Nitin Sharma, 2021. "Probabilistic seismic hazard assessment studies for Mumbai region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 575-600, May.
    8. Abhijit Chakraborty & V. A. Sawant, 2023. "Earthquake response of embankment resting on liquefiable soil with different mitigation models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3093-3117, April.
    9. Weichao Yang & De Hu & Xuelian Jiang & Xuebo Dun & Bingtao Hou & Chuanxing Zheng & Caixia Chen & Rong Zhuang, 2022. "Framework for Spatio-Temporal Distribution of Disasters and Influencing Factors: Exploratory Study of Tianjin, China," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    10. K. Vipin & T. Sitharam & S. Kolathayar, 2013. "Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1179-1195, January.
    11. Chee Tan & Taksiah Majid & Kamar Ariffin & Norazura Bunnori, 2014. "Seismic microzonation for Penang using geospatial contour mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 657-670, September.
    12. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    13. Jaykumar Shukla & Deepankar Choudhury, 2012. "Seismic hazard and site-specific ground motion for typical ports of Gujarat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 541-565, January.
    14. Kaustav Chatterjee & Deepankar Choudhury, 2013. "Variations in shear wave velocity and soil site class in Kolkata city using regression and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2057-2082, December.
    15. Abhishek Kumar & N. H. Harinarayan & Olympa Baro, 2017. "Nonlinear soil response to ground motions during different earthquakes in Nepal, to arrive at surface response spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 13-33, May.
    16. Karma Tempa & Raju Sarkar & Abhirup Dikshit & Biswajeet Pradhan & Armando Lucio Simonelli & Saroj Acharya & Abdullah M. Alamri, 2020. "Parametric Study of Local Site Response for Bedrock Ground Motion to Earthquake in Phuentsholing, Bhutan," Sustainability, MDPI, vol. 12(13), pages 1-22, June.
    17. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.
    18. Nisha Naik & Deepankar Choudhury, 2015. "Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 557-580, January.
    19. Ali Kavand & Hamid Alielahi, 2017. "Site-specific probabilistic seismic hazard analysis for northern part of the Qeshm Island, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 919-946, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:85:y:2017:i:1:d:10.1007_s11069-016-2570-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.