IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p403-425.html
   My bibliography  Save this article

An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India

Author

Listed:
  • A. Kulkarni
  • T. Eldho
  • E. Rao
  • B. Mohan

Abstract

Most urban agglomerations located in the Mumbai coastal region in India are vulnerable to flooding due to increasing frequency of the short-duration heavy rainfall, by virtue of their location at foothills on one side and tidal variations on the other side. Steep slopes in the catchment ensure fast runoff and tidal variation adds to backwater effect in the drainage system, which together are favorable for flooding. The present study simulates the flood inundation due to heavy rainfall and high-tide conditions in a coastal urban catchment within Mumbai region with detention pond. Overland flow is modeled using a mass balance approach, which can adapt to hilly slopes and smoothly accommodate detention pond hydraulics. Dynamic wave channel routing based on finite element method captures the backwater effects due to tidal variation, and raster-based flood inundation model enables direct use of digital elevation model. The integrated model is capable of simulating detention pond hydraulics within the raster flood model for heavy rainfall events. The database required for the model is obtained from the geographical information system (GIS) and remote sensing techniques. Application of the integrated model to literature problems and the catchment of the study area for two non-flooding events gave satisfactory results. Further, the model is applied to an extreme rainfall event of July 26, 2005, coinciding with high-tide conditions, which revealed vulnerability of the area to flooding despite of an existing detention pond. A sensitivity analysis on the location of detention pond indicated that catchment response can be better governed by relocating the detention pond to upstream of existing detention pond especially when heavy rainfall events are becoming frequent. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • A. Kulkarni & T. Eldho & E. Rao & B. Mohan, 2014. "An integrated flood inundation model for coastal urban watershed of Navi Mumbai, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 403-425, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:403-425
    DOI: 10.1007/s11069-014-1079-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1079-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1079-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    2. S. Shahapure & T. Eldho & E. Rao, 2010. "Coastal Urban Flood Simulation Using FEM, GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3615-3640, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    2. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    3. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorena Liuzzo & Vincenzo Sammartano & Gabriele Freni, 2019. "Comparison between Different Distributed Methods for Flood Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3155-3173, July.
    2. Kihwan Song & Min Kim & Han-Min Kang & Eun-Kyung Ham & Junsung Noh & Jong Seong Khim & Jinhyung Chon, 2022. "Stormwater runoff reduction simulation model for urban flood restoration in coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2509-2526, December.
    3. Kamal El Kadi Abderrezzak & André Paquier & Emmanuel Mignot, 2009. "Modelling flash flood propagation in urban areas using a two-dimensional numerical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 433-460, September.
    4. Melissa Haeffner & Dana Hellman, 2020. "The social geometry of collaborative flood risk management: a hydrosocial case study of Tillamook County, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3303-3325, September.
    5. Chen-Chieh Feng & Yi-Chen Wang, 2011. "GIScience research challenges for emergency management in Southeast Asia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 597-616, October.
    6. José Pinho & Rui Ferreira & Luís Vieira & Dirk Schwanenberg, 2015. "Comparison Between Two Hydrodynamic Models for Flooding Simulations at River Lima Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 431-444, January.
    7. Chaochao Li & Xiaotao Cheng & Na Li & Xiaohe Du & Qian Yu & Guangyuan Kan, 2016. "A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas," IJERPH, MDPI, vol. 13(8), pages 1-18, August.
    8. Ting Zhang & Ping Feng & Čedo Maksimović & Paul Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.
    9. Pierfranco Costabile & Francesco Macchione, 2012. "Analysis of One-Dimensional Modelling for Flood Routing in Compound Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1065-1087, March.
    10. Gabrielle Thongs, 2019. "Integrating risk perceptions into flood risk management: Trinidad case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 593-619, September.
    11. Choong-Sung Yi & Jin-Hee Lee & Myung-Pil Shim, 2010. "GIS-based distributed technique for assessing economic loss from flood damage: pre-feasibility study for the Anyang Stream Basin in Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 251-272, November.
    12. Ting Zhang & Ping Feng & Čedo Maksimović & Paul D. Bates, 2016. "Application of a Three-Dimensional Unstructured-Mesh Finite-Element Flooding Model and Comparison with Two-Dimensional Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 823-841, January.
    13. Narayan Prasad Nagendra & Gopalakrishnan Narayanamurthy & Roger Moser, 2022. "Management of humanitarian relief operations using satellite big data analytics: the case of Kerala floods," Annals of Operations Research, Springer, vol. 319(1), pages 885-910, December.
    14. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:403-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.