IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p927-943.html
   My bibliography  Save this article

Simulation of severe thunder storm event: a case study over Pune, India

Author

Listed:
  • S. Fadnavis
  • Medha Deshpande
  • Sachin Ghude
  • P. Ernest Raj

Abstract

Numerical simulation of a typical tropical thunder storm event at Pune (18.53°N, 73.85°E), India, has been performed using the three nested domain configuration of Weather Research and Forecasting-Advanced Research Weather Model (version 3.2). The model simulations have been compared with observations. Sensitivity to cumulus parameterization schemes, namely Betts–Miller (BM), Grell–Devenyi (GD), and Kain–Fritsch (KF), for simulation of vertical structure and time evolution of weather parameters has been evaluated using observations from automatic weather station and global positioning system radiosonde ascents. Comparison of spatial distribution of 24-h accumulated rain with Tropical Rainfall Measuring Mission data shows that BM scheme could simulate better rain than GD and KF schemes. The BM scheme could well simulate the development of storm and heavy rain as it could generate sufficiently humid and deep layer in the lower and middle atmosphere, along with co-existence of updrafts and downdrafts and frozen hydrometeors at the middle level and rain water near the surface. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • S. Fadnavis & Medha Deshpande & Sachin Ghude & P. Ernest Raj, 2014. "Simulation of severe thunder storm event: a case study over Pune, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 927-943, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:927-943
    DOI: 10.1007/s11069-014-1047-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1047-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1047-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Mandal & U. Mohanty & S. Raman, 2004. "A Study on the Impact of Parameterization of Physical Processes on Prediction of Tropical Cyclones over the Bay of Bengal With NCAR/PSU Mesoscale Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 391-414, February.
    2. Krishna Osuri & U. Mohanty & A. Routray & Makarand Kulkarni & M. Mohapatra, 2012. "Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1337-1359, September.
    3. Medha Deshpande & S. Pattnaik & P. Salvekar, 2010. "Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 211-231, November.
    4. D. Rao & Dasari Prasad, 2007. "Sensitivity of tropical cyclone intensification to boundary layer and convective processes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 429-445, June.
    5. Sanjib Deb & C. Kishtawal & V. Bongirwar & P. Pal, 2010. "The simulation of heavy rainfall episode over Mumbai: impact of horizontal resolutions and cumulus parameterization schemes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 117-142, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Chandrasekar & C. Balaji, 2016. "Impact of physics parameterization and 3DVAR data assimilation on prediction of tropical cyclones in the Bay of Bengal region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 223-247, January.
    2. C. Srinivas & V. Yesubabu & K. Hariprasad & S. Ramakrishna & B. Venkatraman, 2013. "Real-time prediction of a severe cyclone ‘Jal’ over Bay of Bengal using a high-resolution mesoscale model WRF (ARW)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 331-357, January.
    3. Funing Li & Jinbao Song & Xia Li, 2018. "A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 647-671, June.
    4. Nafiseh Pegahfar & Maryam Gharaylou & Mohammad Hossein Shoushtari, 2022. "Assessing the performance of the WRF model cumulus parameterization schemes for the simulation of five heavy rainfall events over the Pol-Dokhtar, Iran during 1999–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 253-279, May.
    5. Krishna Osuri & U. Mohanty & A. Routray & Makarand Kulkarni & M. Mohapatra, 2012. "Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1337-1359, September.
    6. V. Yesubabu & C. Srinivas & S. Ramakrishna & K. Hari Prasad, 2014. "Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2109-2128, December.
    7. M. Ahasan & A. Khan, 2013. "Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 351-363, October.
    8. C. Srinivas & V. Yesubabu & K. Hari Prasad & B. Venkatraman & S. Ramakrishna, 2012. "Numerical simulation of cyclonic storms FANOOS, NARGIS with assimilation of conventional and satellite observations using 3-DVAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 867-889, September.
    9. Jayaraman Potty & S. Oo & P. Raju & U. Mohanty, 2012. "Performance of nested WRF model in typhoon simulations over West Pacific and South China Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1451-1470, September.
    10. Marianna Rodrigues Gullo Cavalcante & Priscila Luz Barcellos & Marcio Cataldi, 2020. "Flash flood in the mountainous region of Rio de Janeiro state (Brazil) in 2011: part I—calibration watershed through hydrological SMAP model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1117-1134, July.
    11. Kelin Hu & Qin Chen & Sytske Kimball, 2012. "Consistency in hurricane surface wind forecasting: an improved parametric model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1029-1050, April.
    12. Saji Mohandas & Raghavendra Ashrit, 2014. "Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 213-235, September.
    13. Mohsen Soltanpour & Zahra Ranji & Tomoya Shibayama & Sarmad Ghader, 2021. "Tropical Cyclones in the Arabian Sea: overview and simulation of winds and storm-induced waves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 711-732, August.
    14. Medha Deshpande & S. Pattnaik & P. Salvekar, 2010. "Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 211-231, November.
    15. D. Bala Subrahamanyam & Radhika Ramachandran & K. Nalini & Freddy P. Paul & S. Roshny, 2019. "Performance evaluation of COSMO numerical weather prediction model in prediction of OCKHI: one of the rarest very severe cyclonic storms over the Arabian Sea—a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 431-459, March.
    16. Nasreen Akter, 2022. "Tropical cyclogenesis associated with premonsoon climatological dryline over the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2625-2647, July.
    17. Indrajit Ghosh & Sukhen Das & Nabajit Chakravarty, 2022. "Anomaly temperature in the genesis of tropical cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1477-1503, November.
    18. Sanjeev Singh & C. Kishtawal & P. Pal, 2012. "Track prediction of Indian Ocean cyclones using Lagrangian advection model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 745-778, July.
    19. Nanaji Rao Nellipudi & S. S. V. S. Ramakrishna & Srinivasa Rao Podeti & B. Ravi Srinivasa Rao & V. Yesubabu & V. Brahmananda Rao, 2022. "Impact of the moisture and land surface processes on the sustenance of the cyclonic storm Yemyin over land using the WRF-ARW model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 495-519, October.
    20. Tanvir Islam & Prashant Srivastava & Miguel Rico-Ramirez & Qiang Dai & Manika Gupta & Sudhir Singh, 2015. "Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1473-1495, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:927-943. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.