IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p789-808.html
   My bibliography  Save this article

Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan

Author

Listed:
  • G. Babayev
  • A. Tibaldi
  • F. Bonali
  • F. Kadirov

Abstract

Although a relationship between the occurrence of large earthquakes and the eruptions of close mud volcanoes is well known, several uncertainties remain on understanding the triggering mechanisms. In the present study, we evaluate both the static and dynamic strains induced by earthquakes in the substratum of mud volcanoes. We studied the effects of two earthquakes of M w 6.18 and 6.08 occurred in the Caspian Sea on 25 November 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the 5 years following the earthquakes. The overall eruption rate in the studied area of the 50 years before the 2000 earthquakes was 1.24 that is much smaller than the eruption rate of 6.6 of the 5 years following these earthquakes. The largest number of eruptions occurred within 2 years from the earthquakes with the highest frequency within 6 months. Our calculated earthquake-induced static effects show that crustal dilatation might have triggered only seven eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Based on our data, dynamic rather than static strain is likely to have been the dominating “promoting” factor because it affected all the studied unrest volcanoes and its magnitude was much larger. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:789-808
    DOI: 10.1007/s11069-014-1035-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1035-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1035-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan T. Linde & I. Selwyn Sacks, 1998. "Triggering of volcanic eruptions," Nature, Nature, vol. 395(6705), pages 888-890, October.
    2. Stephen A. Miller & Cristiano Collettini & Lauro Chiaraluce & Massimo Cocco & Massimiliano Barchi & Boris J. P. Kaus, 2004. "Aftershocks driven by a high-pressure CO2 source at depth," Nature, Nature, vol. 427(6976), pages 724-727, February.
    3. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Surve & G. Mohan, 2012. "Possible evidence of remotely triggered and delayed seismicity due to the 2001 Bhuj earthquake (Mw = 7.6) in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 299-310, October.
    2. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    3. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    5. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    7. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    8. Hafver, Andreas & Jettestuen, Espen & Feder, Jens & Meakin, Paul & Malthe-Sørenssen, Anders, 2014. "A node-splitting discrete element model for fluid–structure interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 61-79.
    9. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    10. Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
    11. Francesco Giuntoli & Luca Menegon & Guillaume Siron & Flavio Cognigni & Hugues Leroux & Roberto Compagnoni & Marco Rossi & Alberto Vitale Brovarone, 2024. "Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Konstantinos Leptokaropoulos & Eleftheria Papadimitriou & Beata Orlecka-Sikora & Vasileios Karakostas, 2014. "Forecasting seismicity rates in western Turkey as inferred from earthquake catalog and stressing history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1817-1842, September.
    14. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    15. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    16. Bilal Saif & Mohammad Tahir & Amir Sultan & Muhammad Tahir Iqbal & Talat Iqbal & Muhammad Ali Shah & Samia Gurmani, 2022. "Triggering mechanisms of Gayari avalanche, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2361-2383, July.
    17. Bo Shao & Guiting Hou & Jun Shen, 2021. "Inter-episodes earthquake migration in the Bohai-Zhangjiakou Fault Zone, North China: Insights from numerical modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    18. O. Mishra & D. Zhao & Chandan Ghosh & Z. Wang & O. Singh & Biman Ghosh & K. Mukherjee & D. Saha & G. Chakrabortty & S. Gaonkar, 2011. "Role of crustal heterogeneity beneath Andaman–Nicobar Islands and its implications for coastal hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 51-64, April.
    19. Gaucher, Emmanuel & Schoenball, Martin & Heidbach, Oliver & Zang, Arno & Fokker, Peter A. & van Wees, Jan-Diederik & Kohl, Thomas, 2015. "Induced seismicity in geothermal reservoirs: A review of forecasting approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1473-1490.
    20. Sanjay K. Prajapati & O. P. Mishra, 2021. "Co-seismic deformation and slip distribution of 5 April 2017 Mashhad, Iran earthquake using InSAR sentinel-1A image: implication to source characterization and future seismogenesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3039-3057, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:789-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.