IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v64y2012i3p2129-2151.html
   My bibliography  Save this article

Spatial scan statistics in vulnerability assessment: an application to mountain hazards

Author

Listed:
  • Sven Fuchs
  • Christine Ornetsmüller
  • Reinhold Totschnig

Abstract

In the European Alps, the concept of risk has increasingly been applied in order to reduce the susceptibility of society to mountain hazards. Risk is defined as a function of the magnitude and frequency of a hazard process times consequences; the latter being quantified by the value of elements at risk exposed and their vulnerability. Vulnerability is defined by the degree of loss to a given element at risk resulting from the impact of a natural hazard. Recent empirical studies suggested a dependency of the degree of loss on the hazard impact, and respective vulnerability (or damage-loss) functions were developed. However, until now, only little information is available on the spatial characteristics of vulnerability on a local scale; considerable ranges in the loss ratio for medium process intensities only provide a hint that there might be mutual reasons for lower or higher loss rates. In this paper, we therefore focus on the spatial dimension of vulnerability by searching for spatial clusters in the damage ratio of elements at risk exposed. By using the software SaTScan, we applied an ordinal data model and a normal data model in order to detect spatial distribution patterns of five individual torrent events in Austria. For both models, we detected some significant clusters of high damage ratios, and consequently high vulnerability. Moreover, secondary clusters of high and low values were found. Based on our results, the assumption that lower process intensities result in lower damage ratios, and therefore in lower vulnerability, and vice versa, has to be partly rejected. The spatial distribution of vulnerability is not only dependent on the process intensities but also on the overall land use pattern and the individual constructive characteristics of the buildings exposed. Generally, we suggest the use of a normal data model for test sites exceeding a minimum of 30 elements at risk exposed. As such, the study enhanced our understanding of spatial vulnerability patterns on a local scale. Copyright The Author(s) 2012

Suggested Citation

  • Sven Fuchs & Christine Ornetsmüller & Reinhold Totschnig, 2012. "Spatial scan statistics in vulnerability assessment: an application to mountain hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2129-2151, December.
  • Handle: RePEc:spr:nathaz:v:64:y:2012:i:3:p:2129-2151
    DOI: 10.1007/s11069-011-0081-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0081-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0081-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reinhold Totschnig & Walter Sedlacek & Sven Fuchs, 2011. "A quantitative vulnerability function for fluvial sediment transport," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 681-703, August.
    2. M. Papathoma-Köhle & M. Kappes & M. Keiler & T. Glade, 2011. "Physical vulnerability assessment for alpine hazards: state of the art and future needs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 645-680, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Khalid Hossain & Qingmin Meng, 2020. "A Multi-Decadal Spatial Analysis of Demographic Vulnerability to Urban Flood: A Case Study of Birmingham City, USA," Sustainability, MDPI, vol. 12(21), pages 1-32, November.
    2. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    3. Qianzhu Wu & Joseph Glaz, 2021. "Scan Statistics for Normal Data with Outliers," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 429-458, March.
    4. Holger Cammerer & Annegret Thieken & Peter Verburg, 2013. "Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1243-1270, September.
    5. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    6. Mudassir Ali Khan & Zahiraniza Mustaffa & Indra Sati Hamonangan Harahap & Muhammad Bello Ibrahim & Mohamed Ezzat Al-Atroush, 2022. "Assessment of Physical Vulnerability and Uncertainties for Debris Flow Hazard: A Review concerning Climate Change," Land, MDPI, vol. 11(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
    2. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    3. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    4. Otar Varazanashvili & Nino Tsereteli & Avtandil Amiranashvili & Emil Tsereteli & Elizbar Elizbarashvili & Jemal Dolidze & Lado Qaldani & Manana Saluqvadze & Shota Adamia & Nika Arevadze & Aleksandre G, 2012. "Vulnerability, hazards and multiple risk assessment for Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2021-2056, December.
    5. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    6. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
    7. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    8. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    9. C. Promper & T. Glade, 2016. "Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 111-127, May.
    10. Sven Fuchs & Jörn Birkmann & Thomas Glade, 2012. "Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1969-1975, December.
    11. Aditi Singh & D. P. Kanungo & Shilpa Pal, 2019. "Physical vulnerability assessment of buildings exposed to landslides in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 753-790, March.
    12. Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
    13. Mudassir Ali Khan & Zahiraniza Mustaffa & Indra Sati Hamonangan Harahap & Muhammad Bello Ibrahim & Mohamed Ezzat Al-Atroush, 2022. "Assessment of Physical Vulnerability and Uncertainties for Debris Flow Hazard: A Review concerning Climate Change," Land, MDPI, vol. 11(12), pages 1-22, December.
    14. Insang Yu & Kiyong Park & Eui Hoon Lee, 2021. "Flood Risk Analysis by Building Use in Urban Planning for Disaster Risk Reduction and Climate Change Adaptation," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    15. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    16. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
    17. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    18. Christoph Aubrecht & Sven Fuchs & Clemens Neuhold, 2013. "Spatio-temporal aspects and dimensions in integrated disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1205-1216, September.
    19. M. Jakob & D. Stein & M. Ulmi, 2012. "Vulnerability of buildings to debris flow impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 241-261, January.
    20. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:64:y:2012:i:3:p:2129-2151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.