IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i1p5-28.html
   My bibliography  Save this article

Use of LIDAR in landslide investigations: a review

Author

Listed:
  • Michel Jaboyedoff
  • Thierry Oppikofer
  • Antonio Abellán
  • Marc-Henri Derron
  • Alex Loye
  • Richard Metzger
  • Andrea Pedrazzini

Abstract

This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDAR-derived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed. Copyright The Author(s) 2012

Suggested Citation

  • Michel Jaboyedoff & Thierry Oppikofer & Antonio Abellán & Marc-Henri Derron & Alex Loye & Richard Metzger & Andrea Pedrazzini, 2012. "Use of LIDAR in landslide investigations: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 5-28, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:5-28
    DOI: 10.1007/s11069-010-9634-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9634-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9634-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paschalis D. Koutalakis & Ourania A. Tzoraki & Georgios I. Prazioutis & Georgios T. Gkiatas & George N. Zaimes, 2021. "Can Drones Map Earth Cracks? Landslide Measurements in North Greece Using UAV Photogrammetry for Nature-Based Solutions," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    2. Iris Bostjančić & Marina Filipović & Vlatko Gulam & Davor Pollak, 2021. "Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    3. Marko Sinčić & Sanja Bernat Gazibara & Martin Krkač & Hrvoje Lukačić & Snježana Mihalić Arbanas, 2022. "The Use of High-Resolution Remote Sensing Data in Preparation of Input Data for Large-Scale Landslide Hazard Assessments," Land, MDPI, vol. 11(8), pages 1-37, August.
    4. Mohsin Butt & Muhammad Umar & Raheel Qamar, 2013. "Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 241-254, January.
    5. E. Luzio & P. Mazzanti & A. Brunetti & M. Baleani, 2020. "Assessment of tectonic-controlled rock fall processes threatening the ancient Appia route at the Aurunci Mountain pass (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 909-937, July.
    6. Gianluca Esposito & Cristiano Carabella & Giorgio Paglia & Enrico Miccadei, 2021. "Relationships between Morphostructural/Geological Framework and Landslide Types: Historical Landslides in the Hilly Piedmont Area of Abruzzo Region (Central Italy)," Land, MDPI, vol. 10(3), pages 1-28, March.
    7. Mirko Francioni & Riccardo Salvini & Doug Stead & John Coggan, 2018. "Improvements in the integration of remote sensing and rock slope modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 975-1004, January.
    8. Zhen Du & Li Feng & Haiheng Wang & Ying Dong & Da Luo & Xu Zhang & Hao Liu & Maosheng Zhang, 2023. "Identification of Ground Deformation Patterns in Coal Mining Areas via Rapid Topographical Analysis," Land, MDPI, vol. 12(6), pages 1-18, June.
    9. Kamila Pawluszek, 2019. "Landslide features identification and morphology investigation using high-resolution DEM derivatives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 311-330, March.
    10. Sebastiano Trevisani & Pietro Daniel Omodeo, 2021. "Earth Scientists and Sustainable Development: Geocomputing, New Technologies, and the Humanities," Land, MDPI, vol. 10(3), pages 1-17, March.
    11. Carlo Robiati & Giandomenico Mastrantoni & Mirko Francioni & Matthew Eyre & John Coggan & Paolo Mazzanti, 2023. "Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling," Land, MDPI, vol. 12(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:5-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.