IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v59y2011i1p33-46.html
   My bibliography  Save this article

Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania

Author

Listed:
  • Vineeta Rawat
  • Arun Saraf
  • Josodhir Das
  • Kanika Sharma
  • Yazdana Shujat

Abstract

Cumulative stress energy in an earthquake preparation zone under operating tectonic force manifests various observable signs of the impending earthquake, i.e., earthquake precursors. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like AVHRR (NOAA), MODIS (Terra/Aqua). This paper presents observations made using NOAA-AVHRR data–derived land surface temperature (LST) and outgoing long-wave radiation (OLR) values in case of two moderate earthquakes (22 July 2007, Yamnotri earthquake, India and 27 October 2004, Vrancea earthquake, Romania) using anomalous TIR signals as reflected in LST rise and high OLR values can be seen conspicuously and following similar growth pattern spatially and temporally. In both the cases, data analysis revealed a transient thermal infrared rise in LST ranging 5–10°C around epicentral areas. The thermal anomalies started developing about 7–8 days prior to the main event depending upon the magnitude and focal depth and disappeared after the main shock. Similarly, the OLR values ~30–45 W/m 2 higher than the normal were observed 7–8 days prior to the main event. The rise in LST can be attributed to enhanced greenhouse gas emission from the squeezed rock pore spaces and/or to the activation of p-holes in stressed rock volume and their further recombination at rock-air interface. OLR is temperature and humidity dependent, and any change in these variables may be responsible for anomalous OLR values. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Vineeta Rawat & Arun Saraf & Josodhir Das & Kanika Sharma & Yazdana Shujat, 2011. "Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 33-46, October.
  • Handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:33-46
    DOI: 10.1007/s11069-011-9736-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9736-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9736-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arun Saraf & Vineeta Rawat & Priyanka Banerjee & Swapnamita Choudhury & Santosh Panda & Sudipta Dasgupta & J. Das, 2008. "Satellite detection of earthquake thermal infrared precursors in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 119-135, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Petritsch & Hubert Hasenauer, 2014. "Climate input parameters for real-time online risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1749-1762, February.
    2. Qing-Lin Yao & Zu-Ji Qiang, 2012. "Thermal infrared anomalies as a precursor of strong earthquakes in the distant future," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 991-1003, July.
    3. Jiazheng Lu & Yu Liu & Guoyong Zhang & Bo Li & Lifu He & Jing Luo, 2018. "Partition dynamic threshold monitoring technology of wildfires near overhead transmission lines by satellite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1327-1340, December.
    4. Xueling Zhang & Alimujiang Kasimu & Hongwu Liang & Bohao Wei & Yimuranzi Aizizi, 2022. "Spatial and Temporal Variation of Land Surface Temperature and Its Spatially Heterogeneous Response in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains, Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing-Lin Yao & Zu-Ji Qiang, 2010. "The elliptic stress thermal field prior to M S 7.3 Yutian, and M S 8.0 Wenchuan earthquakes in China in 2008," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 307-322, August.
    2. Qing-Lin Yao & Zu-Ji Qiang, 2012. "Thermal infrared anomalies as a precursor of strong earthquakes in the distant future," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 991-1003, July.
    3. Arun Saraf & Vineeta Rawat & Josodhir Das & Mohammed Zia & Kanika Sharma, 2012. "Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 861-872, March.
    4. Chijoo Lee & Hyungjun Yang, 2018. "A system to detect potential fires using a thermographic camera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 511-523, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:33-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.